
olympia Documentation
Release 3.0

Mozilla Addons Team

May 16, 2018

Contents

1 Contents 3
1.1 Security Bug Reports . 3
1.2 External API . 3
1.3 Server Install . 49
1.4 Development . 67
1.5 Third-Party Usage . 79

HTTP Routing Table 81

i

ii

olympia Documentation, Release 3.0

Add-ons Server is the codebase for https://addons.mozilla.org/; the source lives at https://github.com/mozilla/
addons-server.

In the past, this project was olympia; documentation that refers to olympia refers to this project.

Contents 1

https://addons.mozilla.org/
https://github.com/mozilla/addons-server
https://github.com/mozilla/addons-server

olympia Documentation, Release 3.0

2 Contents

CHAPTER 1

Contents

1.1 Security Bug Reports

This code and its associated production web page are included in the Mozilla’s web and services bug bounty program.
If you find a security vulnerability, please submit it via the process outlined in the program and FAQ pages. Further
technical details about this application are available from the Bug Bounty Onramp page.

Please submit all security-related bugs through Bugzilla using the web security bug form. Never submit security-
related bugs through a Github Issue or by email.

1.2 External API

This shows you how to use the addons.mozilla.org API at /api/v3/ which is hosted at the following URLs:

Environment URL
Production https://addons.mozilla.org/api/v3/
Staging https://addons.allizom.org/api/v3/
Development https://addons-dev.allizom.org/api/v3/

Production Connect to this API for all normal operation.

Staging or Development Connect to these APIs if you need to work with a scratch database or you’re testing features
that aren’t available in production yet. Your production account is not linked to any of these APIs.

Dive into the overview section and the authentication section for an example of how to get started using the API.

1.2.1 Overview

This describes the details of the requests and responses you can expect from the addons.mozilla.org API.

3

https://www.mozilla.org/en-US/security/web-bug-bounty/
https://www.mozilla.org/en-US/security/bug-bounty/faq-webapp/
https://wiki.mozilla.org/Security/BugBountyOnramp/
https://bugzilla.mozilla.org/form.web.bounty
https://addons.mozilla.org/en-US/firefox/
https://addons.mozilla.org/en-US/firefox/

olympia Documentation, Release 3.0

Requests

All requests should be made with the header:

Content-type: application/json

Responses

Status Codes

There are some common API responses that you can expect to receive at times.

GET /api/v3/...

Status Codes

• 200 OK – Success.

• 201 Created – Creation successful.

• 202 Accepted – The request has been accepted for processing. This usually means one or
more asyncronous tasks is being executed in the background so results aren’t immediately
visible.

• 204 No Content – Success (no content is returned).

• 400 Bad Request – There was a problem with the parameters sent with this request.

• 401 Unauthorized – Authentication is required or failed.

• 403 Forbidden – You are not permitted to perform this action.

• 404 Not Found – The requested resource could not be found.

• 500 Internal Server Error – An unknown error occurred.

• 503 Service Unavailable – The site is in maintenance mode at this current time and the
operation can not be performed.

Bad Requests

When returning a HTTP 400 Bad Request response, the API will try to return some information about the er-
ror(s) in the body of the response, as a JSON object. The keys of that object indicate the field(s) that caused an error,
and for each, a list of messages will be provided (often only one message will be present, but sometimes more). If the
error is not attached to a specific field the key non_field_errors will be used instead.

Example:

{
"username": ["This field is required."],
"non_field_errors": ["Error not linked to a specific field."]

}

Unauthorized and Permission Denied

When returning HTTP 401 Unauthorized and HTTP 403 Permission Denied responses, the API will
try to return some information about the error in the body of the response, as a JSON object. A detail property

4 Chapter 1. Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4

olympia Documentation, Release 3.0

will contain a message explaining the error. In addition, in some cases, an optional code property will be present and
will contain a constant corresponding to specific problems to help clients address the situation programmatically. The
constants are as follows:

Value Description
ERROR_INVALID_HEADER The Authorization header is invalid.
ERROR_SIGNATURE_EXPIRED The signature of the token indicates it has expired.
ERROR_DECODING_SIGNATURE The token was impossible to decode and probably invalid.

Pagination

By default, all endpoints returning a list of results are paginated. The default number of items per page is 25 and
clients can use the page_size query parameter to change it to any value between 1 and 50. Exceptions to those rules
are possible but will be noted in the corresponding documentation for affected endpoints.

The following properties will be available in paginated responses:

• next: the URL for the next page in the pagination.

• previous: the URL for the previous page in the pagination.

• page_size: The number of items per page in the pagination.

• page_count: The number of pages available in the pagination. It may be lower than count / page_size for
elasticsearch based paginations that go beyond our max_result_window configuration.

• count: the total number of records.

• results: the array containing the results for this page.

Translated Fields

Fields that can be translated by users (typically name, description) have a special behaviour. The default is to return
them as an object, with languages as keys and translations as values:

{
"name": {

"en-US": "Games",
"fr": "Jeux",
"kn": ""

}
}

However, for performance, if you pass the lang parameter to a GET request, then only the most relevant translation
(the specified language or the fallback, depending on whether a translation is available in the requested language) will
be returned as a string.

{
"name": "Games"

}

This behaviour also applies to POST, PATCH and PUT requests: you can either submit an object containing several
translations, or just a string. If only a string is supplied, it will only be used to translate the field in the current language.

1.2. External API 5

olympia Documentation, Release 3.0

Outgoing Links

If the wrap_outgoing_links query parameter is present, any external links returned for properties such as
support_url or homepagewill be wrapped through outgoing.prod.mozaws.net. Fields supporting some
HTML, such as add-on description, always do this regardless of whether or not the query parameter is present.

Cross Origin

All APIs are available with Cross-Origin Resource Sharing unless otherwise specified.

1.2.2 Authentication (External)

To access the API as an external consumer, you need to include a JSON Web Token (JWT) in the Authorization
header for every request. This header acts as a one-time token that authenticates your user account. No JWT claims
are made about the actual API request you are making.

If you are building an app that lives on the AMO domain, read the documentation for internal authentication instead.

Access Credentials

To create JWTs, first obtain a key and secret from the API Credentials Management Page.

Note: Keep your API keys secret and never commit them to a public code repository or share them with anyone,
including Mozilla contributors.

If someone obtains your secret they can make API requests on behalf of your user account.

Create a JWT for each request

Prior to making every API request, you need to generate a fresh JWT. The JWT will have a short expiration time and
is only valid for a single request so you can’t cache or reuse it. You only need to include a few standard fields; here’s
what the raw JSON object needs to look like before it’s signed:

{
"iss": "your-api-key",
"jti": "0.47362944623455405",
"iat": 1447273096,
"exp": 1447273156

}

iss This is a standard JWT claim identifying the issuer. Set this to the API key you generated on the credentials
management page. For example: user:543210:23.

jti This is a standard JWT claim declaring a JWT ID. This value needs to have a high probability of being unique
across all recent requests made by your issuer ID. This value is a type of cryptographic nonce designed to
prevent replay attacks.

iat This is a standard JWT claim indicating the issued at time. It should be a Unix epoch timestamp and must be in
UTC time.

exp This is a standard JWT claim indicating the expiration time. It should be a Unix epoch timestamp in UTC time
and must be no longer than five minutes past the issued at time.

6 Chapter 1. Contents

https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS
https://tools.ietf.org/html/rfc7519
https://addons.mozilla.org/en-US/developers/addon/api/key/
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://addons.mozilla.org/en-US/developers/addon/api/key/
https://addons.mozilla.org/en-US/developers/addon/api/key/
https://tools.ietf.org/html/rfc7519
https://en.wikipedia.org/wiki/Cryptographic_nonce
https://en.wikipedia.org/wiki/Replay_attack
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

olympia Documentation, Release 3.0

Changed in version 2016-10-06: We increased the expiration time from 60 seconds to five minutes
to workaround support for large and slow uploads.

Note: If you’re having trouble authenticating, make sure your system clock is correct and consider synchronizing it
with something like tlsdate.

Take this JSON object and sign it with the API secret you generated on the credentials management page. You must
sign the JWT using the HMAC-SHA256 algorithm (which is typically the default). The final JWT will be a blob of
base64 encoded text, something like:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
→˓eyJpc3MiOiJ5b3VyLWFwaS1rZXkiLCJqdGkiOiIwLjQ3MzYyOTQ0NjIzNDU1NDA1IiwiaWF0IjoxNDQ3MjczMDk2LCJleHAiOjE0NDcyNzMxNTZ9.
→˓fQGPSV85QPhbNmuu86CIgZiluKBvZKd-NmzM6vo11D

Note: See jwt.io debugger for more information about the token.

Here is an example of creating a JWT in NodeJS using the node-jsonwebtoken library:

var jwt = require('jsonwebtoken');

var issuedAt = Math.floor(Date.now() / 1000);
var payload = {
iss: 'your-api-key',
jti: Math.random().toString(),
iat: issuedAt,
exp: issuedAt + 60,

};

var secret = 'your-api-secret'; // store this securely.
var token = jwt.sign(payload, secret, {
algorithm: 'HS256', // HMAC-SHA256 signing algorithm

});

Create an Authorization header

When making each request, put your generated JSON Web Token (JWT) into an HTTP Authorization header prefixed
with JWT, like this:

Authorization: JWT eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
→˓eyJpc3MiOiJ5b3VyLWFwaS1rZXkiLCJqdGkiOiIwLjQ3MzYyOTQ0NjIzNDU1NDA1IiwiaWF0IjoxNDQ3MjczMDk2LCJleHAiOjE0NDcyNzMxNTZ9.
→˓fQGPSV85QPhbNmuu86CIgZiluKBvZKd-NmzM6vo11DM

Example request

Using the profile as an example endpoint, here’s what a JWT authenticated HTTP request would look like in curl:

curl "https://addons.mozilla.org/api/v3/accounts/profile/" \
-H "Authorization: JWT eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

→˓eyJpc3MiOiJ5b3VyLWFwaS1rZXkiLCJqdGkiOiIwLjQ3MzYyOTQ0NjIzNDU1NDA1IiwiaWF0IjoxNDQ3MjczMDk2LCJleHAiOjE0NDcyNzMxNTZ9.
→˓fQGPSV85QPhbNmuu86CIgZiluKBvZKd-NmzM6vo11DM"

1.2. External API 7

https://github.com/ioerror/tlsdate
https://addons.mozilla.org/en-US/developers/addon/api/key/
https://jwt.io/?value=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ5b3VyLWFwaS1rZXkiLCJqdGkiOiIwLjQ3MzYyOTQ0NjIzNDU1NDA1IiwiaWF0IjoxNDQ3MjczMDk2LCJleHAiOjE0NDcyNzMxNTZ9.fQGPSV85QPhbNmuu86CIgZiluKBvZKd-NmzM6vo11DM#debugger
https://nodejs.org/en/
https://github.com/auth0/node-jsonwebtoken
https://tools.ietf.org/html/rfc7519
http://curl.haxx.se/

olympia Documentation, Release 3.0

Find a JWT library

There are robust open source libraries for creating JWTs in all major programming languages.

1.2.3 Authentication (internal)

This documents how to use authentication in your API requests when you are working on a web application that lives
on AMO domain or subdomain. If you are looking for how to authenticate with the API from an external client, using
your API keys, read the documentation for external authentication instead.

When using this authentication mechanism, the server is responsible for creating an API Token when the user logs
in, and sends it back in the response. The clients must then include that token as an Authorization header on
requests that need authentication. The clients never generate JWTs themselves.

Fetching the token

A fresh token, valid for 30 days, is automatically generated and added to the responses of the following endpoint:

• /api/v3/accounts/authenticate/

The token is available in two forms:

• For the endpoint mentioned above, as a property called token.

• For all endpoints, as a cookie called frontend_auth_token. This cookie expires after 30 days and is set
as HttpOnly.

Creating an Authorization header

When making an authenticated API request, put your generated API Token into an HTTP Authorization header pre-
fixed with Bearer, like this:

Authorization: Bearer
→˓eyJhdXRoX2hhc2giOiJiY2E0MTZkN2RiMGU3NjFmYTA2NDE4MjAzZWU1NTMwOTM4OGZhNzcxIiwidXNlcl9pZCI6MTIzNDV9:1cqe2Q:cPMlmz8ejIkutD-
→˓gNo3EWU8IfL8

1.2.4 Abuse Reports

The following API endpoint covers abuse reporting

Submitting an add-on abuse report

The following API endpoint allows an abuse report to be submitted for an Add-on, either listed on https://addons.
mozilla.org or not. Authentication is not required, but is recommended so reports can be responded to if nessecary.

POST /api/v3/abuse/report/addon/

Request JSON Object

• addon (string) – The id, slug, or guid of the add-on to report for abuse (required).

• message (string) – The body/content of the abuse report (required).

Response JSON Object

8 Chapter 1. Contents

http://jwt.io/
https://addons.mozilla.org
https://addons.mozilla.org

olympia Documentation, Release 3.0

• reporter (object|null) – The user who submitted the report, if authenticated.

• reporter.id (int) – The id of the user who submitted the report.

• reporter.name (string) – The name of the user who submitted the report.

• reporter.username (string) – The username of the user who submitted the report.

• reporter.url (string) – The link to the profile page for of the user who submitted
the report.

• addon (object) – The add-on reported for abuse.

• addon.guid (string) – The add-on extension identifier.

• addon.id (int|null) – The add-on id on AMO. If the guid submitted didn’t match a
known add-on on AMO, then null.

• addon.slug (string|null) – The add-on slug. If the guid submitted didn’t match a
known add-on on AMO, then null.

• message (string) – The body/content of the abuse report.

Submitting a user abuse report

The following API endpoint allows an abuse report to be submitted for a user account on https://addons.mozilla.org.
Authentication is not required, but is recommended so reports can be responded to if nessecary.

POST /api/v3/abuse/report/user/

Request JSON Object

• user (string) – The id or username of the user to report for abuse (required).

• message (string) – The body/content of the abuse report (required).

Response JSON Object

• reporter (object|null) – The user who submitted the report, if authenticated.

• reporter.id (int) – The id of the user who submitted the report.

• reporter.name (string) – The name of the user who submitted the report.

• reporter.url (string) – The link to the profile page for of the user who submitted
the report.

• reporter.username (string) – The username of the user who submitted the report.

• user (object) – The user reported for abuse.

• user.id (int) – The id of the user reported.

• user.name (string) – The name of the user reported.

• user.url (string) – The link to the profile page for of the user reported.

• user.username (string) – The username of the user reported.

• message (string) – The body/content of the abuse report.

1.2.5 Accounts

The following API endpoints cover a users account.

1.2. External API 9

https://developer.mozilla.org/en-US/Add-ons/Install_Manifests#id
https://addons.mozilla.org

olympia Documentation, Release 3.0

Account

This endpoint returns information about a user’s account, by the account id. Only developer accounts are publicly
viewable - other user’s accounts will return a 404 not found response code. Most of the information is optional and
provided by the user so may be missing or inaccurate.

A developer is defined as a user who is listed as a developer or owner of one or more approved add-ons.

GET /api/v3/accounts/account/(int:user_id|string:username)/

Response JSON Object

• average_addon_rating (float) – The average rating for addons the developer has
listed on the website.

• biography (string|null) – More details about the user.

• created (string) – The date when this user first logged in and created this account.

• has_anonymous_display_name (boolean) – The user has chosen neither a name
nor a username.

• has_anonymous_username (boolean) – The user hasn’t chosen a username.

• homepage (string|null) – The user’s website.

• id (int) – The numeric user id.

• is_addon_developer (boolean) – The user has developed and listed add-ons on this
website.

• is_artist (boolean) – The user has developed and listed themes on this website.

• location (string|null) – The location of the user.

• name (string) – The name chosen by the user, or the username if not set.

• num_addons_listed (int) – The number of addons the developer has listed on the
website.

• occupation (string|null) – The occupation of the user.

• picture_type (string|null) – the image type (only ‘image/png’ is supported) if a
user photo has been uploaded, or null otherwise.

• picture_url (string|null) – URL to a photo of the user, or null if no photo has
been uploaded.

• username (string) – username chosen by the user, used in the account url. If not set
will be a randomly generated string.

If you authenticate and access your own account by specifing your own user_id the following additional fields
are returned. You can always access your account, regardless of whether you are a developer or not. If you have
Users:Edit permission you will see these extra fields for all user accounts.

GET /api/v3/accounts/account/(int:user_id|string:username)/

Response JSON Object

• deleted (boolean) – Is the account deleted.

• display_name (string|null) – The name chosen by the user.

• email (string) – Email address used by the user to login and create this account.

10 Chapter 1. Contents

olympia Documentation, Release 3.0

• last_login (string) – The date of the last successful log in to the website.

• last_login_ip (string) – The IP address of the last successfull log in to the website.

• is_verified (boolean) – The user has been verified via FirefoxAccounts.

• permissions (array) – A list of the additional permissions this user has.

• read_dev_agreement (boolean) – The user has read, and agreed to, the developer
agreement that is required to submit addons.

Status Codes

• 200 OK – account found.

• 400 Bad Request – an error occurred, check the error value in the JSON.

• 404 Not Found – no account with that user id.

Important:

• Biography can contain HTML, or other unsanitized content, and it is the responsibiliy of the client to clean
and escape it appropriately before display.

Permissions can be any arbritary string in the format app:action. Either app or action can be the wildcard
*, so *:* means the user has permission to do all actions (i.e. full admin).

The following are some commonly tested permissions; see https://github.com/mozilla/addons-server/
blob/master/src/olympia/constants/permissions.py for the full list.

Value Description
Ad-
minTools:View

Can access the website admin interface index page. Inner pages may require
other/additional permissions.

Addons:Edit Allows viewing and editing of any add-ons details in developer tools.
Ad-
dons:Review

Can access the add-on reviewer tools to approve/reject add-on submissions.

Per-
sonas:Review

Can access the theme reviewer tools to approve/reject theme submissions.

Profile

Note: This API requires authentication.

This endpoint is a shortcut to your own account. It returns an account object

GET /api/v3/accounts/profile/

Edit

Note: This API requires authentication and Users:Edit permission to edit accounts other than your own.

This endpoint allows some of the details for an account to be updated. Any fields in the account (or self) but not listed
below are not editable and will be ignored in the patch request.

1.2. External API 11

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://github.com/mozilla/addons-server/blob/master/src/olympia/constants/permissions.py
https://github.com/mozilla/addons-server/blob/master/src/olympia/constants/permissions.py

olympia Documentation, Release 3.0

PATCH /api/v3/accounts/account/(int:user_id|string:username)/

Request JSON Object

• biography (string|null) – More details about the user. No links are allowed.

• display_name (string|null) – The name chosen by the user.

• homepage (string|null) – The user’s website.

• location (string|null) – The location of the user.

• occupation (string|null) – The occupation of the user.

• username (string|null) – username to be used in the account url. The username can
only contain letters, numbers, underscores or hyphens. All-number usernames are prohib-
ited as they conflict with user-ids.

Uploading a picture

To upload a picture for the profile the request must be sent as content-type multipart/form-data instead of JSON.
Images must be either PNG or JPG; the maximum file size is 4MB. Other editable values can be set at the same time.

PATCH /api/v3/accounts/account/(int:user_id|string:username)/
Request:

curl "https://addons.mozilla.org/api/v3/accounts/account/12345/"
-g -XPATCH --form "picture_upload=@photo.png"
-H "Authorization: Bearer <token>"

Parameters

• user-id – The numeric user id.

Form Parameters

• picture_upload – The user’s picture to upload.

Request Headers

• Content-Type – multipart/form-data

Deleting the picture

To delete the account profile picture call the special endpoint.

DELETE /api/v3/accounts/account/(int:user_id|string:username)/picture

Delete

Note: This API requires authentication and Users:Edit permission to delete accounts other than your own.

Note: Accounts of users who are authors of Add-ons can’t be deleted. All Add-ons (and Themes) must be deleted or
transfered to other users first.

12 Chapter 1. Contents

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

olympia Documentation, Release 3.0

This endpoint allows the account to be deleted. The reviews and ratings created by the user will not be deleted; but all
the user’s details are cleared.

DELETE /api/v3/accounts/account/(int:user_id|string:username)/

Notifications List

Note: This API requires authentication and Users:Edit permission to list notifications on accounts other than your
own.

This endpoint allows you to list the account notifications set for the specified user. The result is an unpaginated list of
the fields below. There are currently 11 notification types.

GET /api/v3/accounts/account/(int:user_id|string:username)/notifications/

Response JSON Object

• name (string) – The notification short name.

• enabled (boolean) – If the notification is enabled (defaults to True).

• mandatory (boolean) – If the notification can be set by the user.

Notifications Update

Note: This API requires authentication and Users:Edit permission to set notification preferences on accounts other
than your own.

This endpoint allows account notifications to be set or updated. The request should be a dict of name:True|False pairs.
Any number of notifications can be changed; only non-mandatory notifications can be changed - attempting to set a
mandatory notification will return an error.

POST /api/v3/accounts/account/(int:user_id|string:username)/notifications/

Request JSON Object

• <name> (boolean) – Is the notification enabled?

Super-creation

Note: This API requires authentication.

This allows you to generate a new user account and sign in as that user.

Important:

• Your API user must be in the Accounts:SuperCreate group to access this endpoint. Use manage.py
createsuperuser --add-to-supercreate-group to create a superuser with proper access.

• This endpoint is not available in all API environments.

1.2. External API 13

olympia Documentation, Release 3.0

POST /api/v3/accounts/super-create/
Request:

Parameters

• email – assign the user a specific email address. A fake email will be assigned by default.

• username – assign the user a specific username. A random username will be assigned by
default.

• fxa_id – assign the user a Firefox Accounts ID, like one returned in the uuid parameter
of a profile request. This is empty by default, meaning the user’s account will need to be
migrated to a Firefox Account.

• group – assign the user to a permission group. Valid choices:

– reviewer: can access add-on reviewer pages, formerly known as Editor Tools

– admin: can access any protected page

curl "https://addons.mozilla.org/api/v3/accounts/super-create/" \
-X POST -H "Authorization: JWT <jwt-token>"

Response:

{
"username": "super-created-7ee304ce",
"display_name": "Super Created 7ee304ce",
"user_id": 10985,
"email": "super-created-7ee304ce@addons.mozilla.org",
"fxa_id": null,
"groups": [],
"session_cookie": {

"encoded": "sessionid=.eJyrVopPLC3JiC8tTi2KT...",
"name": "sessionid",
"value": ".eJyrVopPLC3JiC8tTi2KT..."

}
}

Status Codes

• 201 Created – Account created.

• 422 Unprocessable Entity – Incorrect request parameters.

The session cookie will enable you to sign in for a limited time as this new user. You can pass it to any login-
protected view like this:

curl --cookie sessionid=... -s -D - \
"https://addons.mozilla.org/en-US/developers/addon/submit/1" \
-o /dev/null

Session

Log out of the current session. This is for use with the internal authentication that authenticates browser sessions.

DELETE /api/v3/accounts/session/
Request:

14 Chapter 1. Contents

https://github.com/mozilla/fxa-profile-server/blob/master/docs/API.md#get-v1profile
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://tools.ietf.org/html/rfc4918#section-11.2

olympia Documentation, Release 3.0

curl "https://addons.mozilla.org/api/v3/accounts/session/"
-H "Authorization: Bearer <jwt-token>" -X DELETE

Response:

{
"ok": true

}

Status Codes

• 200 OK – session logged out.

• 401 Unauthorized – authentication failed.

1.2.6 Activity

Note: These APIs are experimental and are currently being worked on. Endpoints may change without warning. The
only authentication method available at the moment is the internal one.

Review Notes List

This endpoint allows you to list the approval/rejection review history for a version of an add-on.

GET /api/v3/addons/addon/(int:addon_id|string:addon_slug|string:addon_guid)/versions/(int:
id)/
reviewnotes/

Note: All add-ons require authentication and either reviewer permissions or a user account listed as a developer
of the add-on.

Response JSON Object

• count (int) – The number of versions for this add-on.

• next (string) – The URL of the next page of results.

• previous (string) – The URL of the previous page of results.

• results (array) – An array of per version review notes.

Review Notes Detail

This endpoint allows you to fetch a single review note for a specific version of an add-on.

GET /api/v3/addons/addon/(int:addon_id|string:addon_slug|string:addon_guid)/versions/(int:
id)/
reviewnotes/

int: id/

1.2. External API 15

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

olympia Documentation, Release 3.0

Response JSON Object

• id (int) – The id for a review note.

• action (string) – The type of review note.

• action_label (string) – The text label of the action.

• user.id (int) – The id of the reviewer or author who left the review note.

• user.name (string) – The name of the reviewer or author.

• user.url (string) – The link to the profile page for of the reviewer or author.

• user.username (string) – The username of the reviewer or author.

• comments (string) – The text content of the review note.

• date (string) – The date the review note was created.

Possible values for the action field:

Value Description
approved Version, or file in the version, was approved
rejected Version, or file in the version, was rejected
review-requested Developer requested review
more-information-requested Reviewer requested more information from developer
super-review-requested Add-on was referred to an admin for attention
comment Reviewer added comment for other reviewers
review-note Generic review comment

Incoming Mail End-point

This endpoint allows a mail server or similar to submit a json object containing single email into AMO which will be
processed. The only type of email currently supported is a reply to an activity email (e.g an add-on review, or a reply
to an add-on review). Any other content or invalid emails will be discarded.

POST /api/v3/activity/mail

Note: This API endpoint uses a custom authentication method. The value SecretKey in the submitted json must
match one defined in settings.INBOUND_EMAIL_SECRET_KEY. The IP address of the request must match one
defined in settings.ALLOWED_CLIENTS_EMAIL_API, if defined.

Request JSON Object

• SecretKey (string) – A value that matches set-
tings.INBOUND_EMAIL_SECRET_KEY.

• Message.TextBody (string) – The plain text body of the email.

• To (array) – Array of To email addresses. All will be parsed, and the first matching the
correct format used.

• To[].EmailAddress (string) – An email address in the format reviewre-
ply+randomuuidstring@addons.mozilla.org.

16 Chapter 1. Contents

olympia Documentation, Release 3.0

1.2.7 Add-ons

Note: These APIs are experimental and are currently being worked on. Endpoints may change without warning. The
only authentication method available at the moment is the internal one.

Featured

This endpoint allows you to list featured add-ons matching some parameters. Results are sorted randomly and there-
fore, the standard pagination parameters are not accepted. The query parameter page_size is allowed but only
serves to customize the number of results returned, clients can not request a specific page.

GET /api/v3/addons/featured/

Query Parameters

• app (string) – Required. Filter by add-on application availability.

• category (string) – Filter by category slug. app and type parameters need to be set,
otherwise this parameter is ignored.

• lang (string) – Request add-ons featured for this specific language to be returned along-
side add-ons featured globally. Also activate translations for that query. (See translated
fields)

• type (string) – Filter by add-on type.

• page_size (int) – Maximum number of results to return. Defaults to 25.

Response JSON Object

• results (array) – An array of add-ons.

Search

This endpoint allows you to search through public add-ons.

GET /api/v3/addons/search/

Query Parameters

• q (string) – The search query. The maximum length allowed is 100 characters.

• app (string) – Filter by add-on application availability.

• appversion (string) – Filter by application version compatibility. Pass the full version
as a string, e.g. 46.0. Only valid when the app parameter is also present.

• author (string) – Filter by exact author username. Multiple author names can be spec-
ified, separated by comma(s), in which case add-ons with at least one matching author are
returned.

• category (string) – Filter by category slug. app and type parameters need to be set,
otherwise this parameter is ignored.

• exclude_addons (string) – Exclude add-ons by slug or id. Multiple add-ons can
be specified, separated by comma(s).

1.2. External API 17

olympia Documentation, Release 3.0

• featured (boolean) – Filter to only featured add-ons. Only featured=true is sup-
ported. If app is provided as a parameter then only featured collections targeted to that
application are taken into account. If lang is provided then only featured collections tar-
geted to that language, (and collections for all languages), are taken into account. Both app
and lang can be provided to filter to addons that are featured in collections that application
and for that language, (and for all languages).

• guid (string) – Filter by exact add-on guid. Multiple guids can be specified, separated
by comma(s), in which case any add-ons matching any of the guids will be returned. As
guids are unique there should be at most one add-on result per guid specified.

• lang (string) – Activate translations in the specific language for that query. (See trans-
lated fields)

• page (int) – 1-based page number. Defaults to 1.

• page_size (int) – Maximum number of results to return for the requested page. Defaults
to 25.

• platform (string) – Filter by add-on platform availability.

• tag (string) – Filter by exact tag name. Multiple tag names can be specified, separated
by comma(s), in which case add-ons containing all specified tags are returned.

• type (string) – Filter by add-on type.

• sort (string) – The sort parameter. The available parameters are documented in the
table below.

Response JSON Object

• count (int) – The number of results for this query.

• next (string) – The URL of the next page of results.

• previous (string) – The URL of the previous page of results.

• results (array) – An array of add-ons. As described below, the following
fields are omitted for performance reasons: release_notes and license fields on
current_version as well as picture_url from authors.

Available sorting parameters:

Param-
eter

Description

created Creation date, descending.
down-
loads

Number of weekly downloads, descending.

hotness Hotness (average number of users progression), descending.
random Random ordering. Only available when no search query is passed and when filtering to

only return featured add-ons.
rating Bayesian rating, descending.
rele-
vance

Search query relevance, descending.

updated Last updated date, descending.
users Average number of daily users, descending.

The default is to sort by relevance if a search query (q) is present, otherwise sort by number of weekly
downloads, descending.

18 Chapter 1. Contents

olympia Documentation, Release 3.0

You can combine multiple parameters by separating them with a comma. For instance, to sort search
results by downloads and then by creation date, use sort=downloads,created. The only exception
is the random sort parameter, which is only available alone.

Autocomplete

Similar to add-ons search endpoint above, this endpoint allows you to search through public add-ons. Because it’s
meant as a backend for autocomplete though, there are a couple key differences:

• No pagination is supported. There are no next, prev or count fields, and passing page_size or page has
no effect, a maximum of 10 results will be returned at all times.

• Only a subset of fields are returned.

GET /api/v3/addons/autocomplete/

Query Parameters

• q (string) – The search query.

• app (string) – Filter by add-on application availability.

• appversion (string) – Filter by application version compatibility. Pass the full version
as a string, e.g. 46.0. Only valid when the app parameter is also present.

• author (string) – Filter by exact author username.

• category (string) – Filter by category slug. app and type parameters need to be set,
otherwise this parameter is ignored.

• lang (string) – Activate translations in the specific language for that query. (See trans-
lated fields)

• platform (string) – Filter by add-on platform availability.

• tag (string) – Filter by exact tag name. Multiple tag names can be specified, separated
by comma(s).

• type (string) – Filter by add-on type.

• sort (string) – The sort parameter. The available parameters are documented in the
table below.

Response JSON Object

• results (array) – An array of add-ons. Only the id, icon_url, name and url
fields are supported though.

Detail

This endpoint allows you to fetch a specific add-on by id, slug or guid.

Note: Non-public add-ons and add-ons with only unlisted versions require both authentication and
reviewer permissions or an account listed as a developer of the add-on.

A 401 or 403 error response will be returned when clients don’t meet those requirements. Those responses
will contain the following properties:

• detail: string containing a message about the error.

• is_disabled_by_developer: boolean set to true when the add-on has been voluntarily
disabled by its developer.

1.2. External API 19

olympia Documentation, Release 3.0

• is_disabled_by_mozilla: boolean set to true when the add-on has been disabled by
Mozilla.

GET /api/v3/addons/addon/(int:id|string:slug|string:guid)/

Query Parameters

• lang (string) – Activate translations in the specific language for that query. (See Trans-
lated Fields)

• wrap_outgoing_links (string) – If this parameter is present, wrap outgoing links
through outgoing.prod.mozaws.net (See Outgoing Links)

Response JSON Object

• id (int) – The add-on id on AMO.

• authors (array) – Array holding information about the authors for the add-on.

• authors[].id (int) – The id for an author.

• authors[].name (string) – The name for an author.

• authors[].url (string) – The link to the profile page for an author.

• authors[].username (string) – The username for an author.

• authors[].picture_url (string) – URL to a photo of the user, or
/static/img/anon_user.png if not set. For performance reasons this field is omitted from
the search endpoint.

• average_daily_users (int) – The average number of users for the add-on (updated
daily).

• categories (object) – Object holding the categories the add-on belongs to.

• categories[app_name] (array) – Array holding the category slugs the add-on be-
longs to for a given add-on application. (Combine with the add-on type to determine the
name of the category).

• contributions_url (string|null) – URL to the (external) webpage where the
addon’s authors collect monetary contributions, if set.

• current_version (object) – Object holding the current version of the add-on. For
performance reasons the license field omits the text property from the detail endpoint.
In addition, license and release_notes are omitted entirely from the search end-
point.

• default_locale (string) – The add-on default locale for translations.

• description (string|object|null) – The add-on description (See translated
fields).

• developer comments (string|object|null) – Additional information about the
add-on provided by the developer. (See translated fields).

• edit_url (string) – The URL to the developer edit page for the add-on.

• guid (string) – The add-on extension identifier.

• has_eula (boolean) – The add-on has an End-User License Agreement that the user
needs to agree with before installing (See add-on EULA and privacy policy).

20 Chapter 1. Contents

https://developer.mozilla.org/en-US/Add-ons/Install_Manifests#id

olympia Documentation, Release 3.0

• has_privacy_policy (boolean) – The add-on has a Privacy Policy (See add-on
EULA and privacy policy).

• homepage (string|object|null) – The add-on homepage (See translated fields).

• icon_url (string) – The URL to icon for the add-on (including a cachebusting query
string).

• icons (object) – An object holding the URLs to an add-ons icon including a cachebust-
ing query string as values and their size as properties. Currently exposes 32 and 64 pixels
wide icons.

• is_disabled (boolean) – Whether the add-on is disabled or not.

• is_experimental (boolean) – Whether the add-on has been marked by the developer
as experimental or not.

• is_featured (boolean) – The add-on appears in a featured collection.

• is_source_public (boolean) – Whether the add-on source is publicly viewable or
not.

• name (string|object|null) – The add-on name (See translated fields).

• last_updated (string) – The date of the last time the add-on was updated by its
developer(s).

• latest_unlisted_version (object|null) – Object holding the latest unlisted
version of the add-on. This field is only present if the user has unlisted reviewer permissions,
or is listed as a developer of the add-on.

• previews (array) – Array holding information about the previews for the add-on.

• previews[].id (int) – The id for a preview.

• previews[].caption (string|object|null) – The caption describing a preview
(See translated fields).

• previews[].image_size[] (int) – width, height dimensions of of the preview im-
age.

• previews[].image_url (string) – The URL (including a cachebusting query
string) to the preview image.

• previews[].thumbnail_size[] (int) – width, height dimensions of of the pre-
view image thumbnail.

• previews[].thumbnail_url (string) – The URL (including a cachebusting query
string) to the preview image thumbnail.

• public_stats (boolean) – Boolean indicating whether the add-on stats are public or
not.

• ratings (object) – Object holding ratings summary information about the add-on.

• ratings.count (int) – The total number of user ratings for the add-on.

• ratings.text_count (int) – The number of user ratings with review text for the
add-on.

• ratings_url (string) – The URL to the user ratings list page for the add-on.

• ratings.average (float) – The average user rating for the add-on.

• ratings.bayesian_average (float) – The bayesian average user rating for the
add-on.

1.2. External API 21

olympia Documentation, Release 3.0

• requires_payment (boolean) – Does the add-on require payment, non-free services
or software, or additional hardware.

• review_url (string) – The URL to the reviewer review page for the add-on.

• slug (string) – The add-on slug.

• status (string) – The add-on status.

• summary (string|object|null) – The add-on summary (See translated fields).

• support_email (string|object|null) – The add-on support email (See trans-
lated fields).

• support_url (string|object|null) – The add-on support URL (See translated
fields).

• tags (array) – List containing the text of the tags set on the add-on.

• theme_data (object) – Object holding lightweight theme (Persona) data. Only present
for themes (Persona).

• type (string) – The add-on type.

• url (string) – The (absolute) add-on detail URL.

• weekly_downloads (int) – The number of downloads for the add-on in the last week.
Not present for lightweight themes.

Possible values for the status field / parameter:

Value Description
lite Preliminarily Reviewed
public Fully Reviewed
deleted Deleted
pending Pending approval (Valid for themes only)
disabled Disabled by Mozilla
rejected Rejected (Valid for themes only)
nominated Awaiting Full Review
incomplete Incomplete
unreviewed Awaiting Preliminary Review
lite-nominated Preliminarily Reviewed and Awaiting Full Review
review-pending Flagged for further review (Valid for themes only)

Possible values for the keys in the compatibility field, as well as the app parameter in the search
API:

Value Description
android Firefox for Android
firefox Firefox
seamonkey SeaMonkey
thunderbird Thunderbird

Note: For possible version values per application, see valid application versions.

Possible values for the current_version.files[].platform field:

22 Chapter 1. Contents

https://developer.mozilla.org/en-US/Add-ons/Themes/Lightweight_themes
https://addons.mozilla.org/en-US/firefox/pages/appversions/

olympia Documentation, Release 3.0

Value Description
all All
mac Mac
linux Linux
android Android
windows Windows

Possible values for the type field / parameter:

Note: For backwards-compatibility reasons, the value for Theme is persona. theme refers to a
Complete Theme.

Value Description
theme Complete Theme
search Search Engine
persona Theme
language Language Pack (Application)
extension Extension
dictionary Dictionary

Add-on and Version Submission

See Uploading a version.

Versions List

This endpoint allows you to list all versions belonging to a specific add-on.

GET /api/v3/addons/addon/(int:addon_id|string:addon_slug|string:addon_guid)/versions/

Note: Non-public add-ons and add-ons with only unlisted versions require both:

• authentication

• reviewer permissions or an account listed as a developer of the add-on

Query Parameters

• filter (string) – The filter to apply.

• lang (string) – Activate translations in the specific language for that query. (See trans-
lated fields)

• page (int) – 1-based page number. Defaults to 1.

• page_size (int) – Maximum number of results to return for the requested page. Defaults
to 25.

Response JSON Object

• count (int) – The number of versions for this add-on.

1.2. External API 23

olympia Documentation, Release 3.0

• next (string) – The URL of the next page of results.

• previous (string) – The URL of the previous page of results.

• results (array) – An array of versions.

By default, the version list API will only return public versions (excluding versions that have incomplete,
disabled, deleted, rejected or flagged for further review files) - you can change that with the filter
query parameter, which may require authentication and specific permissions depending on the value:

Value Description
all_without_unlistedShow all listed versions attached to this add-on. Requires either reviewer

permissions or a user account listed as a developer of the add-on.
all_with_unlistedShow all versions (including unlisted) attached to this add-on. Requires either

reviewer permissions or a user account listed as a developer of the add-on.
all_with_deletedShow all versions attached to this add-on, including deleted ones. Requires

admin permissions.

Version Detail

This endpoint allows you to fetch a single version belonging to a specific add-on.

GET /api/v3/addons/addon/(int:addon_id|string:addon_slug|string:addon_guid)/versions/(int:
id)/

Query Parameters

• lang (string) – Activate translations in the specific language for that query. (See trans-
lated fields)

Response JSON Object

• id (int) – The version id.

• channel (string) – The version channel, which determines its visibility on the site. Can
be either unlisted or listed.

• compatibility (object) – Object detailing which applications the version is compat-
ible with. The exact min/max version numbers in the object correspond to valid application
versions. Example:

{
"compatibility": {
"android": {
"min": "38.0a1",
"max": "43.0"

},
"firefox": {
"min": "38.0a1",
"max": "43.0"

}
}

}

• compatibility[app_name].max (object) – Maximum version of the corre-
sponding app the version is compatible with. Should only be enforced by clients if
is_strict_compatibility_enabled is true.

24 Chapter 1. Contents

https://addons.mozilla.org/en-US/firefox/pages/appversions/
https://addons.mozilla.org/en-US/firefox/pages/appversions/

olympia Documentation, Release 3.0

• compatibility[app_name].min (object) – Minimum version of the correspond-
ing app the version is compatible with.

• edit_url (string) – The URL to the developer edit page for the version.

• files (array) – Array holding information about the files for the version.

• files[].id (int) – The id for a file.

• files[].created (string) – The creation date for a file.

• files[].hash (string) – The hash for a file.

• files[].platform (string) – The platform for a file.

• files[].id – The size for a file, in bytes.

• files[].is_mozilla_signed_extension (boolean) – Whether the file was
signed with a Mozilla internal certificate or not.

• files[].is_restart_required (boolean) – Whether the file requires a browser
restart to work once installed or not.

• files[].is_webextension (boolean) – Whether the file is a WebExtension or not.

• files[].status (int) – The status for a file.

• files[].url (string) – The (absolute) URL to download a file. Clients using this API
can append an optional src query parameter to the url which would indicate the source of
the request (See download sources).

• files[].permissions[] (array) – Array of the webextension permissions for this
File, as strings. Empty for non-webextensions.

• license (object) – Object holding information about the license for the version. For
performance reasons this field is omitted from add-on search endpoint.

• license.name (string|object|null) – The name of the license (See translated
fields).

• license.text (string|object|null) – The text of the license (See translated
fields). For performance reasons this field is omitted from add-on detail endpoint.

• license.url (string|null) – The URL of the full text of license.

• release_notes (string|object|null) – The release notes for this version (See
translated fields). For performance reasons this field is omitted from add-on search end-
point.

• reviewed (string) – The date the version was reviewed at.

• is_strict_compatibility_enabled (boolean) – Whether or not this version
has strictCompatibility. set.

• version (string) – The version number string for the version.

Add-on Feature Compatibility

This endpoint allows you to fetch feature compatibility information for a a specific add-on by id, slug or guid.

GET /api/v3/addons/addon/(int:id|string:slug|string:guid)/feature_compatibility/

Note: Non-public add-ons and add-ons with only unlisted versions require both:

1.2. External API 25

https://developer.mozilla.org/en-US/Add-ons/Install_Manifests#strictCompatibility

olympia Documentation, Release 3.0

• authentication

• reviewer permissions or an account listed as a developer of the add-on

Response JSON Object

• e10s (int) – The add-on e10s compatibility. Can be one of the following:

Value Description
compatible multiprocessCompatible marked as true in the install.rdf.
compatible-webextension A WebExtension, so compatible.
incompatible multiprocessCompatible marked as false in the install.rdf.
unknown multiprocessCompatible has not been set.

Add-on EULA and Privacy Policy

This endpoint allows you to fetch an add-on EULA and privacy policy.

GET /api/v3/addons/addon/(int:id|string:slug|string:guid)/eula_policy/

Note: Non-public add-ons and add-ons with only unlisted versions require both:

• authentication

• reviewer permissions or an account listed as a developer of the add-on

Response JSON Object

• eula (string|object|null) – The text of the EULA, if present (See translated
fields).

• privacy_policy (string|object|null) – The text of the Privacy Policy, if
present (See translated fields).

Language Tools

This endpoint allows you to list all public language tools add-ons available on AMO.

GET /api/v3/addons/language-tools/

Note: Because this endpoint is intended to be used to feed a page that displays all available language tools in a
single page, it is not paginated as normal, and instead will return all results without obeying regular pagination
parameters. The ordering is left undefined, it’s up to the clients to re-order results as needed before displaying
the add-ons to the end-users.

In addition, the results can be cached for up to 24 hours, based on the full URL used in the request.

Query Parameters

• app (string) – Mandatory. Filter by add-on application availability.

26 Chapter 1. Contents

olympia Documentation, Release 3.0

• appversion (string) – Filter by application version compatibility. Pass the full version
as a string, e.g. 46.0. Only valid when both the app and type parameters are also present,
and only makes sense for Language Packs, since Dictionaries are always compatible with
every application version.

• lang (string) – Activate translations in the specific language for that query. (See trans-
lated fields)

• type (string) – Mandatory when appversion is present. Filter by add-on type. The
default is to return both Language Packs or Dictionaries.

Response JSON Object

• results (array) – An array of language tools.

• results[].id (int) – The add-on id on AMO.

• results[].current_compatible_version (object) – Object holding the lat-
est publicly available version of the add-on compatible with the appversion parameter
used. Only present when appversion is passed and valid. For performance reasons, only
the following version properties are returned on the object: id, files, reviewed, and
version.

• results[].default_locale (string) – The add-on default locale for translations.

• results[].name (string|object|null) – The add-on name (See translated
fields).

• results[].guid (string) – The add-on extension identifier.

• results[].locale_disambiguation (string) – Free text field allowing clients
to distinguish between multiple dictionaries in the same locale but different spellings. Only
present when using the Language Tools endpoint.

• results[].slug (string) – The add-on slug.

• results[].target_locale (string) – For dictionaries and language packs, the
locale the add-on is meant for. Only present when using the Language Tools endpoint.

• results[].type (string) – The add-on type.

• results[].url (string) – The (absolute) add-on detail URL.

Replacement Add-ons

This endpoint returns a list of suggested replacements for legacy add-ons that are unsupported in Firefox 57. Added
to support the TAAR recommendation service.

GET /api/v3/addons/replacement-addon/

Query Parameters

• page (int) – 1-based page number. Defaults to 1.

• page_size (int) – Maximum number of results to return for the requested page. Defaults
to 25.

Response JSON Object

• count (int) – The total number of replacements.

• next (string) – The URL of the next page of results.

• previous (string) – The URL of the previous page of results.

1.2. External API 27

https://developer.mozilla.org/en-US/Add-ons/Install_Manifests#id

olympia Documentation, Release 3.0

• results (array) – An array of replacements matches.

• results[].guid (string) – The extension identifier of the legacy add-on.

• results[].replacement[] (string) – An array of guids for the replacements add-
ons. If there is a direct replacement this will be a list of one add-on guid. The list can be
empty if all the replacement add-ons are invalid (e.g. not publicly available on AMO). The
list will also be empty if the replacement is to a url that is not an addon or collection.

Compat Override

This endpoint allows compatibility overrides specified by AMO admins to be searched. Compatibilty overrides are
used within Firefox i(and other toolkit applications e.g. Thunderbird) to change compatibility of installed add-ons
where they have stopped working correctly in new release of Firefox, etc.

GET /api/v3/addons/compat-override/

Query Parameters

• guid (string) – Filter by exact add-on guid. Multiple guids can be specified, separated
by comma(s), in which case any add-ons matching any of the guids will be returned. As
guids are unique there should be at most one add-on result per guid specified.

• page (int) – 1-based page number. Defaults to 1.

• page_size (int) – Maximum number of results to return for the requested page. Defaults
to 25.

Response JSON Object

• count (int) – The number of results for this query.

• next (string) – The URL of the next page of results.

• previous (string) – The URL of the previous page of results.

• results (array) – An array of compat overrides.

• results[].addon_id (int|null) – The add-on identifier on AMO, if specified.

• results[].addon_guid (string) – The add-on extension identifier.

• results[].name (string) – A description entered by AMO admins to describe the
override.

• results[].version_ranges (array) – An array of affected versions of the add-on.

• results[].version_ranges[].addon_min_version (string) – minimum
version of the add-on to be disabled.

• results[].version_ranges[].addon_max_version (string) – maximum
version of the add-on to be disabled.

• results[].version_ranges[].applications (array) – An array of affected
applications for this range of versions.

• results[].version_ranges[].applications[].name (string) – Applica-
tion name (e.g. Firefox).

• results[].version_ranges[].applications[].id (int) – Application id
on AMO.

• results[].version_ranges[].applications[].min_version (string)
– minimum version of the application to be disabled in.

28 Chapter 1. Contents

olympia Documentation, Release 3.0

• results[].version_ranges[].applications[].max_version (string)
– maximum version of the application to be disabled in.

• results[].version_ranges[].applications[].guid (string) – Applica-
tion guid.

Recommendations

This endpoint provides recommendations of other addons to install, fetched from the recommendation service. Four
recommendations are fetched, but only valid, publicly available addons are shown (so max 4 will be returned, and
possibly less).

GET /api/v3/addons/recommendations/

Query Parameters

• guid (string) – Fetch recommendations for this add-on guid.

• lang (string) – Activate translations in the specific language for that query. (See trans-
lated fields)

• recommended (boolean) – Fetch recommendations from the recommendation service,
or return a curated fallback list instead.

Response JSON Object

• outcome (string) – Outcome of the response returned. Will be either: recommended -
responses from recommendation service; recommended_fallback - service timed out
or returned empty results so we returned fallback; curated - recommended=False
was requested so fallback returned.

• fallback_reason (string|null) – if outcome was recommended_fallback
then the reason why. Will be either: timeout or no_results.

• count (int) – The number of results for this query.

• next (string) – The URL of the next page of results.

• previous (string) – The URL of the previous page of results.

• results (array) – An array of add-ons. The following fields are omitted for perfor-
mance reasons: release_notes and license fields on current_version and
current_beta_version, as well as picture_url from authors.

1.2.8 Categories

Note: These APIs are experimental and are currently being worked on. Endpoints may change without warning.

Category List

Categories are defined by a name, a slug, a type and an application. Slugs are only guaranteed to be unique for a given
app and type combination, and can therefore be re-used for different categories.

This endpoint is not paginated.

GET /api/v3/addons/categories/

Response JSON Object

1.2. External API 29

https://addons.mozilla.org/en-US/firefox/pages/appversions/
https://github.com/mozilla/taar

olympia Documentation, Release 3.0

• id (int) – The category id.

• name (string) – The category name. Returns the already translated string.

• slug (string) – The category slug. See csv table for more possible values.

• application (string) – Application, see add-on application for more details.

• misc (boolean) – Whether or not the category is miscellaneous.

• type (string) – Category type, see add-on type for more details.

• weight (int) – Category weight used in sort ordering.

• description (string) – The category description. Returns the already translated
string.

Current categories

Name Slug Type Application
Alerts & Updates alerts-updates extension firefox
Appearance appearance extension firefox
Bookmarks bookmarks extension firefox
Download Management download-management extension firefox
Feeds, News & Blogging feeds-news-blogging extension firefox
Games & Entertainment games-entertainment extension firefox
Language Support language-support extension firefox
Photos, Music & Videos photos-music-videos extension firefox
Privacy & Security privacy-security extension firefox
Search Tools search-tools extension firefox
Shopping shopping extension firefox
Social & Communication social-communication extension firefox
Tabs tabs extension firefox
Web Development web-development extension firefox
Other other extension firefox
Animals animals theme firefox
Compact compact theme firefox
Large large theme firefox
Miscellaneous miscellaneous theme firefox
Modern modern theme firefox
Nature nature theme firefox
OS Integration os-integration theme firefox
Retro retro theme firefox
Sports sports theme firefox
General general dictionary firefox
Bookmarks bookmarks search firefox
Business business search firefox
Dictionaries & Encyclopedias dictionaries-encyclopedias search firefox
General general search firefox
Kids kids search firefox
Multiple Search multiple-search search firefox
Music music search firefox
News & Blogs news-blogs search firefox
Photos & Images photos-images search firefox

Continued on next page

30 Chapter 1. Contents

olympia Documentation, Release 3.0

Table 1 – continued from previous page
Name Slug Type Application
Shopping & E-Commerce shopping-e-commerce search firefox
Social & People social-people search firefox
Sports sports search firefox
Travel travel search firefox
Video video search firefox
General general language firefox
Abstract abstract persona firefox
Causes causes persona firefox
Fashion fashion persona firefox
Film and TV film-and-tv persona firefox
Firefox firefox persona firefox
Foxkeh foxkeh persona firefox
Holiday holiday persona firefox
Music music persona firefox
Nature nature persona firefox
Other other persona firefox
Scenery scenery persona firefox
Seasonal seasonal persona firefox
Solid solid persona firefox
Sports sports persona firefox
Websites websites persona firefox
Appearance and Customization appearance extension thunderbird
Calendar and Date/Time calendar extension thunderbird
Chat and IM chat extension thunderbird
Contacts contacts extension thunderbird
Folders and Filters folders-and-filters extension thunderbird
Import/Export importexport extension thunderbird
Language Support language-support extension thunderbird
Message Composition composition extension thunderbird
Message and News Reading message-and-news-reading extension thunderbird
Miscellaneous miscellaneous extension thunderbird
Privacy and Security privacy-and-security extension thunderbird
Tags tags extension thunderbird
Compact compact theme thunderbird
Miscellaneous miscellaneous theme thunderbird
Modern modern theme thunderbird
Nature nature theme thunderbird
General general dictionary thunderbird
General general language thunderbird
Bookmarks bookmarks extension seamonkey
Downloading and File Management downloading-and-file-management extension seamonkey
Interface Customizations interface-customizations extension seamonkey
Language Support and Translation language-support-and-translation extension seamonkey
Miscellaneous miscellaneous extension seamonkey
Photos and Media photos-and-media extension seamonkey
Privacy and Security privacy-and-security extension seamonkey
RSS, News and Blogging rss-news-and-blogging extension seamonkey
Search Tools search-tools extension seamonkey
Site-specific site-specific extension seamonkey

Continued on next page

1.2. External API 31

olympia Documentation, Release 3.0

Table 1 – continued from previous page
Name Slug Type Application
Web and Developer Tools web-and-developer-tools extension seamonkey
Miscellaneous miscellaneous theme seamonkey
General general dictionary seamonkey
General general language seamonkey
Device Features & Location device-features-location extension android
Experimental experimental extension android
Feeds, News, & Blogging feeds-news-blogging extension android
Performance performance extension android
Photos & Media photos-media extension android
Security & Privacy security-privacy extension android
Shopping shopping extension android
Social Networking social-networking extension android
Sports & Games sports-games extension android
User Interface user-interface extension android

1.2.9 Collections

The following API endpoints cover user created collections.

List

Note: This API requires authentication and Collections:Edit permission to list collections other than your own.

This endpoint allows you to list all collections authored by the specified user. The results are sorted by the most
recently updated collection first.

GET /api/v3/accounts/account/(int:user_id|string:username)/collections/

Response JSON Object

• count (int) – The number of results for this query.

• next (string) – The URL of the next page of results.

• previous (string) – The URL of the previous page of results.

• results (array) – An array of collections.

Detail

This endpoint allows you to fetch a single collection by its slug. It returns any public collection by the specified
user. You can access a non-public collection only if it was authored by you, the authenticated user. If your account
has the Collections:Edit permission then you can access any collection.

GET /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:
col-
lec-
tion_slug)/

Response JSON Object

• id (int) – The id for the collection.

32 Chapter 1. Contents

olympia Documentation, Release 3.0

• addon_count (int) – The number of add-ons in this collection.

• author.id (int) – The id of the author (creator) of the collection.

• author.name (string) – The name of the author.

• author.url (string) – The link to the profile page for of the author.

• author.username (string) – The username of the author.

• default_locale (string) – The default locale of the description and name fields.
(See translated fields).

• description (string|object|null) – The description the author added to the col-
lection. (See translated fields).

• modified (string) – The date the collection was last updated.

• name (string|object) – The name of the collection. (See translated fields).

• public (boolean) – Whether the collection is listed - publicly viewable.

• slug (string) – The name used in the URL.

• url (string) – The (absolute) collection detail URL.

• uuid (string) – A unique identifier for this collection; primarily used to count addon
installations that come via this collection.

If the with_addons parameter is passed then addons in the collection are returned along with the detail. Add-ons
returned are limited to the first 25 in the collection, in the default sort (popularity, descending). Filtering is as per
collection addon list endpoint - i.e. defaults to only including public add-ons. Additional add-ons can be returned
from the Collection Add-on list endpoint.

GET /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:
col-
lec-
tion_slug)/
?
with_addons

Query Parameters

• filter (string) – The filter to apply.

Response JSON Object

• id (int) – The id for the collection.

• addon_count (int) – The number of add-ons in this collection.

• addons (array) – An array of addons with notes.

. . . rest as collection detail response

Create

Note: This API requires authentication.

This endpoint allows a collection to be created under your account. Any fields in the collection but not listed below
are not settable and will be ignored in the request.

1.2. External API 33

olympia Documentation, Release 3.0

POST /api/v3/accounts/account/(int:user_id|string:username)/collections/

Request JSON Object

• default_locale (string|null) – The default locale of the description and name
fields. Defaults to en-US. (See translated fields).

• description (string|object|null) – The description the author added to the col-
lection. (See translated fields).

• name (string|object) – The name of the collection. (required) (See translated fields).

• public (boolean) – Whether the collection is listed - publicly viewable. Defaults to
True.

• slug (string) – The name used in the URL (required).

Edit

Note: This API requires authentication and Collections:Edit permission to edit collections other than your own.

This endpoint allows some of the details for a collection to be updated. Any fields in the collection but not listed below
are not editable and will be ignored in the patch request.

PATCH /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:
col-
lec-
tion_slug)/

Request JSON Object

• default_locale (string) – The default locale of the description and name fields.
(See translated fields).

• description (string|object|null) – The description the author added to the col-
lection. (See translated fields).

• name (string|object) – The name of the collection. (See translated fields).

• public (boolean) – Whether the collection is listed - publicly viewable.

• slug (string) – The name used in the URL.

Delete

Note: This API requires authentication and Collections:Edit permission to delete collections other than your own.

This endpoint allows the collection to be deleted.

DELETE /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:
col-
lec-
tion_slug)/

34 Chapter 1. Contents

olympia Documentation, Release 3.0

Collection Add-ons List

This endpoint lists the add-ons in a collection, together with collector’s notes.

GET /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:
col-
lec-
tion_slug)/
addons/

Query Parameters

• filter (string) – The filter to apply.

• sort (string) – The sort parameter. The available parameters are documented in the
table below.

Response JSON Object

• count (int) – The number of results for this query.

• next (string) – The URL of the next page of results.

• previous (string) – The URL of the previous page of results.

• results (array) – An array of items in this collection.

Available sorting parameters:

Parameter Description
added Date the add-on was added to the collection, ascending.
popularity Number of total weekly downloads of the add-on, ascending.
name Add-on name, ascending.

All sort parameters can be reversed, e.g. ‘-added’ for descending dates. The default sorting is by popularity, descending
(‘-popularity’).

By default, the collection addon list API will only return public add-ons (excluding add-ons that have no
approved listed versions, are disabled or deleted) - you can change that with the filter query parameter:

Value Description
all Show all add-ons in the collection, including those that have non-public sta-

tuses. This still excludes deleted add-ons.
all_with_deletedShow all add-ons in the collection, including deleted add-ons too.

Collection Add-ons Detail

This endpoint gets details of a single add-on in a collection, together with collector’s notes.

GET /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:
col-
lec-
tion_slug)/
addons/
(int:addon_id|string:slug)/

Response JSON Object

1.2. External API 35

olympia Documentation, Release 3.0

• addon (object) – The add-on for this item.

• notes (string|object|null) – The collectors notes for this item. (See translated
fields).

• downloads (int) – The downloads that occured via this collection.

Collection Add-ons Create

Note: This API requires authentication and Collections:Edit permission to edit collections other than your own.

This endpoint allows a single add-on to be added to a collection, optionally with collector’s notes.

POST /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:
col-
lec-
tion_slug)/
addons/

Request JSON Object

• addon (string) – The add-on id or slug to be added (required).

• notes (string|object|null) – The collectors notes for this item. (See translated
fields).

Collection Add-ons Edit

Note: This API requires authentication and Collections:Edit permission to edit collections other than your own.

This endpoint allows the collector’s notes for single add-on to be updated.

PATCH /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:
col-
lec-
tion_slug)/
addons/
(int:addon_id|string:slug)/

Request JSON Object

• notes (string|object|null) – The collectors notes for this item. (See translated
fields).

Collection Add-ons Delete

Note: This API requires authentication and Collections:Edit permission to edit collections other than your own.

This endpoint allows a single add-on to be removed from a collection.

36 Chapter 1. Contents

olympia Documentation, Release 3.0

DELETE /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:
col-
lec-
tion_slug)/
addons/
(int:addon_id|string:slug)/

1.2.10 Discovery

Note: These APIs are experimental and are currently being worked on. Endpoints may change without warning.

Discovery Content

This endpoint allows you to fetch content for the new Discovery Pane in Firefox (about:addons).

GET /api/v3/discovery/

Query Parameters

• lang (string) – Activate translations in the specific language for that query. (See
translated fields)

• edition (string) – Return content for a specific edition of Firefox. Currently
only china is supported.

Response JSON Object

• count (int) – The number of results for this query.

• results (array) – The array containing the results for this query.

• results[].heading (string) – The heading for this item. May contain some
HTML tags.

• results[].description (string|null) – The description for this item,
if any. May contain some HTML tags.

• results[].is_recommendation (boolean) – If this item was from the
recommendation service, rather than static curated content.

• results[].addon (object) – The add-on for this item. Only a subset of
fields are present: id, current_version (with only the compatibility and
files fields present), guid, icon_url, name, slug, theme_data, type
and url.

Discovery Recommendations

If a telemetry client id is passed as a parameter to the discovery pane api endpoint then static curated content is
amended with recommendations from the recommendation service. The same number of results will be returned as a
standard discovery response and only extensions (not themes) are recommeded. Only valid, publicly available addons
are shown.

E.g. a standard discovery pane will display 7 items, 4 extensions and 3 themes. Up to 4 extensions will be replaced
with recommendations; the 3 themes will not be replaced. The API will still return a total of 7 items.

1.2. External API 37

about:addons
https://github.com/mozilla/taar

olympia Documentation, Release 3.0

Note:

Specifying an edition parameter disables recommendations - the telemetry-client-id is ig-
nored and standard discovery response returned.

GET /api/v3/discovery/?telemetry-client-id=12345678-90ab-cdef-1234-567890abcdef

Query Parameters

• telemetry-client-id (string) – The telemetry client ID to be passed to the TAAR
service.

• lang (string) – In addition to activating translations (see Discovery Content), this will
be passed as locale to TAAR.

• platform (string) – The platform identifier to be passed to TAAR.

• branch (string) – Additional parameter passed along to TAAR.

• study (string) – Additional parameter passed along to TAAR.

1.2.11 Download Sources

When requesting an add-on file URL, clients have the option to indicate what is the source of the request. This will
then be used to group by downloads by sources in the add-on statistics page.

To indicate the source, add the src query parameter to the download URL. The following values are recognized:

Name Description
api Add-ons Manager
discovery-promo Add-ons Manager Promo
discovery-featured Add-ons Manager Featured
discovery-learnmore Add-ons Manager Learn More
ss Search Suggestions
search Search Results
homepagepromo Homepage Promo
hp-btn-promo Homepage Promo
hp-dl-promo Homepage Promo
hp-hc-featured Homepage Featured
hp-dl-featured Homepage Featured
hp-hc-upandcoming Homepage Up and Coming
hp-dl-upandcoming Homepage Up and Coming
hp-dl-mostpopular Homepage Most Popular
dp-btn-primary Detail Page
dp-btn-version Detail Page (bottom)
addondetail Detail Page
addon-detail-version Detail Page (bottom)
dp-btn-devchannel Detail Page (Development Channel)
oftenusedwith Often Used With
dp-hc-oftenusedwith Often Used With
dp-dl-oftenusedwith Often Used With
dp-hc-othersby Others By Author
dp-dl-othersby Others By Author

Continued on next page

38 Chapter 1. Contents

olympia Documentation, Release 3.0

Table 2 – continued from previous page
Name Description
dp-hc-dependencies Dependencies
dp-dl-dependencies Dependencies
dp-hc-upsell Upsell
dp-dl-upsell Upsell
developers Meet the Developer
userprofile User Profile
version-history Version History
sharingapi Sharing
category Category Pages
collection Collections
cb-hc-featured Category Landing Featured Carousel
cb-dl-featured Category Landing Featured Carousel
cb-hc-toprated Category Landing Top Rated
cb-dl-toprated Category Landing Top Rated
cb-hc-mostpopular Category Landing Most Popular
cb-dl-mostpopular Category Landing Most Popular
cb-hc-recentlyadded Category Landing Recently Added
cb-dl-recentlyadded Category Landing Recently Added
cb-btn-featured Browse Listing Featured Sort
cb-dl-featured Browse Listing Featured Sort
cb-btn-users Browse Listing Users Sort
cb-dl-users Browse Listing Users Sort
cb-btn-rating Browse Listing Rating Sort
cb-dl-rating Browse Listing Rating Sort
cb-btn-created Browse Listing Created Sort
cb-dl-created Browse Listing Created Sort
cb-btn-name Browse Listing Name Sort
cb-dl-name Browse Listing Name Sort
cb-btn-popular Browse Listing Popular Sort
cb-dl-popular Browse Listing Popular Sort
cb-btn-updated Browse Listing Updated Sort
cb-dl-updated Browse Listing Updated Sort
cb-btn-hotness Browse Listing Up and Coming Sort
cb-dl-hotness Browse Listing Up and Coming Sort
find-replacement Find replacement service for obsolete add-ons

1.2.12 Reviews

Note: These APIs are experimental and are currently being worked on. Endpoints may change without warning. The
only authentication method available at the moment is the internal one.

List reviews

This endpoint allows you to fetch reviews for a given add-on or user. Either addon or user query parameters are
required, and they can be combined together.

When addon, user and version are passed on the same request, page_size will automatically be set to 1, since

1.2. External API 39

olympia Documentation, Release 3.0

an user can only post one review per version of a given add-on. This can be useful to find out if a user has already
posted a review for the current version of an add-on.

GET /api/v3/reviews/review/

Query Parameters

• addon (string) – The add-on id, slug, or guid to fetch reviews from. When passed,
the reviews shown will always be the latest posted by each user on this particular add-on
(which means there should only be one review per user in the results), unless the version
parameter is also passed.

• filter (string) – The filter(s) to apply.

• user (string) – The user id to fetch reviews from.

• show_grouped_ratings (boolean) – Whether or not to show ratings aggregates for
this add-on in the response (Use “true”/”1” as truthy values, “0”/”false” as falsy ones).

• version (string) – The version id to fetch reviews from.

• page (int) – 1-based page number. Defaults to 1.

• page_size (int) – Maximum number of results to return for the requested page. Defaults
to 25.

Response JSON Object

• count (int) – The number of results for this query.

• next (string) – The URL of the next page of results.

• previous (string) – The URL of the previous page of results.

• results (array) – An array of reviews.

• grouped_ratings (object) – Only present if show_grouped_ratings query pa-
rameter is present. An object with 5 key-value pairs, the keys representing each possible
rating (Though a number, it has to be converted to a string because of the JSON formatting)
and the values being the number of times the corresponding rating has been posted for this
add-on, e.g. {"1": 4, "2": 8, "3": 15, "4": 16: "5": 23}.

By default, the review list API will only return not-deleted reviews, and include reviews without
text. You can change that with the filter query parameter. You can filter by multiple values, e.g.
filter=with_deleted,without_empty_body,with_yours

Value Description
with_deleted Returns deleted reviews too. This requires the Addons:Edit permission.
with-
out_empty_body

Excludes reviews that only contain a rating, and no textual content.

with_yours Used in combination without_empty_body to include your own reviews,
even if they have no text.

Detail

This endpoint allows you to fetch a review by its id.

GET /api/v3/reviews/review/(int: id)/

Response JSON Object

40 Chapter 1. Contents

olympia Documentation, Release 3.0

• id (int) – The review id.

• addon (object) – An object included for convenience that contains only two properties:
id and slug, corresponding to the add-on id and slug.

• body (string|null) – The text of the review.

• is_latest (boolean) – Boolean indicating whether the review is the latest posted by
the user on the same add-on.

• previous_count (int) – The number of reviews posted by the user on the same add-on
before this one.

• rating (int) – The rating the user gave as part of the review.

• reply (object|null) – The review object containing the developer reply to this review,
if any (The fields rating, reply and version are omitted).

• title (string|null) – The title of the review.

• version.id (int) – The add-on version id the review applies to.

• version.version (string) – The add-on version string the review applies to.

• user (object) – Object holding information about the user who posted the review.

• user.id (string) – The user id.

• user.name (string) – The user name.

• user.url (string) – The user profile URL.

• user.username (string) – The user username.

Post

This endpoint allows you to post a new review for a given add-on and version. If successful a review object is returned.

Note: Requires authentication.

POST /api/v3/reviews/review/

Request JSON Object

• addon (string) – The add-on id the review applies to (required).

• body (string|null) – The text of the review.

• title (string|null) – The title of the review.

• rating (int) – The rating the user wants to give as part of the review (required).

• version (int) – The add-on version id the review applies to (required).

Edit

This endpoint allows you to edit an existing review by its id. If successful a review object is returned.

Note: Requires authentication and Addons:Edit permissions or the user account that posted the review.

Only body, title and rating are allowed for modification.

1.2. External API 41

olympia Documentation, Release 3.0

PATCH /api/v3/reviews/review/(int: id)/

Request JSON Object

• body (string|null) – The text of the review.

• title (string|null) – The title of the review.

• rating (int) – The rating the user wants to give as part of the review.

Delete

This endpoint allows you to delete an existing review by its id.

Note: Requires authentication and Addons:Edit permission or the user account that posted the review.
Even with the right permission, users can not delete a review from somebody else if it was posted on an
add-on they are listed as a developer of.

DELETE /api/v3/reviews/review/(int: id)/

Reply

This endpoint allows you to reply to an existing user review. If successful a review reply object is returned.

Note: Requires authentication and either Addons:Edit permission or a user account listed as a developer
of the add-on.

POST /api/v3/reviews/review/(int: id)/reply/

Request JSON Object

• body (string) – The text of the reply (required).

• title (string|null) – The title of the reply.

Flag

This endpoint allows you to flag an existing user review, to let a moderator know that something may be wrong with
it.

Note: Requires authentication and a user account different from the one that posted the review.

POST /api/v3/reviews/review/(int: id)/flag/

Request JSON Object

• flag (string) – A constant describing the reason behind the flagging.

• note (string|null) – A note to explain further the reason behind the flagging. This
field is required if the flag is review_flag_reason_other, and passing it will auto-
matically change the flag to that value.

Response JSON Object

42 Chapter 1. Contents

olympia Documentation, Release 3.0

• object – If successful, an object with a msg property containing a success message. If
not, an object indicating which fields contain errors.

Available constants for the flag property:

Constant Description
review_flag_reason_spam Spam or otherwise non-review content
review_flag_reason_language Inappropriate language/dialog
review_flag_reason_bug_support Misplaced bug report or support request
review_flag_reason_other Other (please specify)

1.2.13 Reviewers

Note: These APIs are experimental and are currently being worked on. Endpoints may change without warning. The
only authentication method available at the moment is the internal one.

Subscribe

This endpoint allows you to subscribe the current user to the notification sent when a new listed version is submitted
on a particular add-on.

Note: Requires authentication and the current user to have any reviewer-related permission.

Unsubscribe

This endpoint allows you to unsubscribe the current user to the notification sent when a new listed version is submitted
on a particular add-on.

Note: Requires authentication and the current user to have any reviewer-related permission.

Disable

This endpoint allows you to disable the public listing for an add-on.

Note:

Requires authentication and the current user to have Reviews:Admin permission.

Enable

This endpoint allows you to re-enable the public listing for an add-on. If the add-on can’t be public because it does
not have public versions, it will instead be changed to awaiting review or incomplete depending on the status of its
versions.

1.2. External API 43

olympia Documentation, Release 3.0

Note: Requires authentication and the current user to have Reviews:Admin permission.

Flags

This endpoint allows you to manipulate various reviewer-specific flags on an add-on.

Note:

Requires authentication and the current user to have Reviews:Admin permission.

1.2.14 Signing

Note: This API requires authentication.

The following API endpoints help you get your add-on signed by Mozilla so it can be installed into Firefox without
error. See extension signing for more details about Firefox’s signing policy.

Client Libraries

The following libraries will make it easier to use the signing API:

• sign-addon, for general programattic use in NodeJS

• web-ext sign, for developing Web Extensions

If you are using curl to interact with the API you should be sure to pass the -g flag to skip “URL globbing” which
won’t interact well with add-on Ids that have {} characters in them.

Uploading a version

You can upload a new version for signing by issuing a PUT request and including the contents of your add-on in the
upload parameter as multi-part formdata. This will create a pending version on the add-on and will prevent future
submissions to this version unless validation or review fails.

If the upload succeeded then it will be submitted for validation and you will be able to check its status.

PUT /api/v3/addons/[string:addon-id]/versions/[string:version]/
Request:

curl "https://addons.mozilla.org/api/v3/addons/@my-addon/versions/1.0/"
-g -XPUT --form "upload=@build/my-addon.xpi"
-H "Authorization: JWT <jwt-token>"

Parameters

• addon-id – The id for the add-on.

• version – The version of the add-on.

Form Parameters

44 Chapter 1. Contents

https://wiki.mozilla.org/Addons/Extension_Signing
https://github.com/mozilla/sign-addon/
https://nodejs.org/
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Getting_started_with_web-ext#Signing_your_extension_for_distribution
https://developer.mozilla.org/en-US/Add-ons/WebExtensions

olympia Documentation, Release 3.0

• upload – The add-on file being uploaded.

• channel – (optional) The channel this version should be uploaded to, which determines
its visibility on the site. It can be either unlisted or listed. See the note below.

Request Headers

• Content-Type – multipart/form-data

Note: channel is only valid for new versions on existing add-ons. If the add-on is new then the version will
be created as unlisted. If the parameter isn’t supplied then the channel of the most recent version (submitted
either via this API or the website) will be assumed. For example, if you submit a version as listed then the
next version will be listed if you don’t specify the channel.

Response:

The response body will be the same as the Checking the status of your upload response.

Status Codes

• 201 Created – new add-on and version created.

• 202 Accepted – new version created.

• 400 Bad Request – an error occurred, check the error value in the JSON.

• 401 Unauthorized – authentication failed.

• 403 Forbidden – you do not own this add-on.

• 409 Conflict – version already exists.

Uploading without an ID

Note: This is only valid for WebExtensions. All other add-on types require an add-on ID and have to use the regular
endpoint to upload a version.

POST /api/v3/addons/
Request:

curl "https://addons.mozilla.org/api/v3/addons/"
-g -XPOST -F "upload=@build/my-addon.xpi" -F "version=1.0"
-H "Authorization: JWT <jwt-token>"

Form Parameters

• upload – The add-on file being uploaded.

• version – The version of the add-on.

Request Headers

• Content-Type – multipart/form-data

Response:

The response body will be the same as the Checking the status of your upload response.

1.2. External API 45

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10
https://wiki.mozilla.org/WebExtensions
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

olympia Documentation, Release 3.0

Status Codes

• 201 Created – new add-on and version created.

• 202 Accepted – new version created.

• 400 Bad Request – an error occurred, check the error value in the JSON.

• 401 Unauthorized – authentication failed.

• 403 Forbidden – you do not own this add-on.

• 409 Conflict – version already exists.

Creating an add-on

If this is the first time that your add-on’s UUID has been seen then the add-on will be created as an unlisted add-on
when the version is uploaded.

Checking the status of your upload

You can check the status of your upload by issuing a GET request. There are a few things that will happen once a
version is uploaded and the status of those events is included in the response.

Once validation is completed (whether it passes or fails) then the processed property will be true. You can check
if validation passed using the valid property and check the results with validation_results.

If validation passed then your add-on will be submitted for review. In the case of unlisted add-ons this will happen
automatically. If your add-on is listed then it will be reviewed by a human and that will take a bit longer. You can
check the automated_signing property to see if signing will happen automatically or after a manual review. Once
review is complete then the reviewed property will be set and you can check the results with the passed_review
property.

GET /api/v3/addons/[string:addon-id]/versions/[string:version]/(uploads/[string:upload-pk]/)
Request:

curl "https://addons.mozilla.org/api/v3/addons/@my-addon/versions/1.0/"
-g -H "Authorization: JWT <jwt-token>"

Parameters

• addon-id – the id for the add-on.

• version – the version of the add-on.

• upload-pk – (optional) the pk for a specific upload.

Response:

{
"guid": "420854ee-7a85-42b9-822f-8e03dc5f6de9",
"active": true,
"automated_signing": true,
"files": [

{
"download_url": "https://addons.mozilla.org/api/v3/downloads/file/100/

→˓example-id.0-fx+an.xpi?src=api",
"hash":

→˓"sha256:1bb945266bf370170a656350d9b640cbcaf70e671cf753c410e604219cdd9267",

(continues on next page)

46 Chapter 1. Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10

olympia Documentation, Release 3.0

(continued from previous page)

"signed": true
}

],
"passed_review": true,
"pk": "f68abbb3b1624c098fe979a409fe3ce9",
"processed": true,
"reviewed": true,
"url": "https://addons.mozilla.org/api/v3/addons/@example-id.0/uploads/

→˓f68abbb3b1624c098fe979a409fe3ce9/",
"valid": true,
"validation_results": {},
"validation_url": "https://addons.mozilla.org/en-US/developers/upload/

→˓f68abbb3b1624c098fe979a409fe3ce9",
"version": "1.0"

}

Response JSON Object

• guid – The GUID of the addon.

• active – version is active.

• automated_signing – If true, the version will be signed automatically. If false it will
end up in the manual review queue when valid.

• files[].download_url – URL to download the add-on file.

• files[].hash – Hash of the file contents, prefixed by the hashing algorithm used. Ex-
ample: sha256:1bb945266bf3701... . In the case of signed files, the hash will be
that of the final signed file, not the original unsigned file.

• files[].signed – if the file is signed.

• passed_review – if the version has passed review.

• pk – the pk for this upload.

• processed – if the version has been processed by the validator.

• reviewed – if the version has been reviewed.

• url – URL to check the status of this upload.

• valid – if the version passed validation.

• validation_results – the validation results (removed from the example for brevity).

• validation_url – a URL to the validation results in HTML format.

• version – the version.

Status Codes

• 200 OK – request successful.

• 401 Unauthorized – authentication failed.

• 403 Forbidden – you do not own this add-on.

• 404 Not Found – add-on or version not found.

1.2. External API 47

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

olympia Documentation, Release 3.0

Downloading signed files

When checking on your request to sign a version, a successful response will give you an API URL to download the
signed files. This endpoint returns the actual file data for download.

GET /api/v3/file/[int:file_id]/[string:base_filename]
Request:

curl "https://addons.mozilla.org/api/v3/file/123/some-addon.xpi?src=api"
-g -H "Authorization: JWT <jwt-token>"

Parameters

• file_id – the primary key of the add-on file.

• base_filename – the base filename. This is just a convenience for clients so that they
write meaningful file names to disk.

Response:

There are two possible responses:

• Binary data containing the file

• A header that redirects you to a mirror URL for the file. In this case, the initial response will include
a SHA-256 hash of the file in the header X-Target-Digest. Clients should check that the final
downloaded file matches this hash.

Status Codes

• 200 OK – request successful.

• 302 Found – file resides at a mirror URL

• 401 Unauthorized – authentication failed.

• 404 Not Found – file does not exist or requester does not have access to it.

1.2.15 GitHub Webhooks

Note: This is an Experimental API and can change at any time.

This API provides an endpoint that works with GitHub to provide add-on validation as a GitHub webhook. This end
point is designed to be called specifically from GitHub and will only send API responses back to api.github.com.

To set this up on a GitHub repository you will need to:

• Go to Settings > Webhooks & Services

• Add a new Webhook with Payload URL of https://addons.mozilla.org/api/v3/github/validate/

• Click Send me everything

• Click Update webhook

At this point the validator will be able to get the data, but won’t be able to write a response to GitHub. To enable
responses to GitHub:

• Go to Settings > Collaborators

48 Chapter 1. Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

olympia Documentation, Release 3.0

• Enter addons-robot and select the entry

• Click Add collaborator

• You will have to wait for a Mozilla person to respond to the invite

If this service proves useful and this service transitions from its Experimental API state, we will remove as many of
these steps as possible.

The validator will run when you create or alter a pull request.

POST /api/v3/github/validate/
Request:

A GitHub API webhook body. Currently only pull_request events are processed, all others are ignored.

Response:

Status Codes

• 201 Created – request has been processed and a pending message sent back to GitHub.

• 200 OK – request is not a pull_request, it’s been accepted.

• 422 Unprocessable Entity – body is invalid.

1.3 Server Install

The following documentation covers how to install and develop the server using Docker.

1.3.1 Install with Docker

Want the easiest way to start contributing to AMO? Try our Docker-based development environment.

First you’ll need to install Docker. Please read their docs for the installation steps specific to your operating system.

There are two options for running docker depending on the platform you are running.

• Run docker on the host machine directly (recommended)

• Run docker-machine which will run docker inside a virtual-machine

Historically Mac and Windows could only run Docker via a vm. That has recently changed with the arrival of docker-
for-mac and docker-for-windows.

If your platform can run Docker directly either on Linux, with docker-for-mac or docker-for-windows then this is the
easiest way to run addons-server.

If you have problems, due to not meeting the minimum specifications for docker-for-windows or you’d prefer to keep
running docker-machine vms then docker-machine will still work just fine. See the docs for creating the vm here
Creating the docker-machine vm

Note: If you’re on a Mac and already have a working docker-machine setup you can run that and docker-for-mac (but
not docker-for-windows) side by side. The only caveat is it’s recommended that you keep the versions of Docker on
the vm and the host in-sync to ensure compatibility when you switch between them.

1.3. Server Install 49

https://developer.github.com/v3/repos/hooks/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://tools.ietf.org/html/rfc4918#section-11.2
https://docs.docker.com/installation/#installation
https://docs.docker.com/engine/installation/mac/#/docker-for-mac
https://docs.docker.com/engine/installation/mac/#/docker-for-mac
https://docs.docker.com/engine/installation/windows/#/docker-for-windows
https://docs.docker.com/engine/installation/mac/#/docker-for-mac
https://docs.docker.com/engine/installation/windows/#/docker-for-windows
https://docs.docker.com/engine/installation/windows/#/docker-for-windows

olympia Documentation, Release 3.0

Setting up the containers

Note: docker-toolbox, docker-for-mac and docker-for-windows will install docker-compose for you. If you’re
on Linux and you need it, you can install it manually with:

pip install docker-compose

Next once you have Docker up and running follow these steps on your host machine:

Checkout the addons-server sourcecode.
git clone git://github.com/mozilla/addons-server.git
cd addons-server
Download the containers
docker-compose pull # Can take a while depending on your internet bandwidth.
Start up the containers
docker-compose up -d
make initialize_docker # Answer yes, and create your superuser when asked.
On Windows you can substitute `make initialize_docker` for the command:
docker-compose exec web make initialize

Note: Docker requires the code checkout to exist within your home directory so that Docker can mount the source-
code into the container.

Accessing the web server

By default our docker-compose config exposes the web-server on port 80 of localhost.

We use olympia.test as the default hostname to access your container server (e.g. for Firefox Accounts). To be
able access the development environment using http://olympia.test you’ll need to edit your /etc/hosts
file on your native operating system. For example:

[ip-address] olympia.test

Typically the IP address is localhost (127.0.0.1) but if you’re using docker-machine see Accessing the web-server with
docker-machine for details of how to get the ip of the Docker vm.

By default we configure OLYMPIA_SITE_URL to point to http://olympia.test.

If you choose a different hostname you’ll need to set that environment variable and restart the Docker containers:

docker-compose stop # only needed if running
export OLYMPIA_SITE_URL=http://[YOUR_HOSTNAME}
docker-compose up -d

Running common commands

Run the tests using make, outside of the Docker container:

make test
or
docker-compose exec web pytest src/olympia/

50 Chapter 1. Contents

olympia Documentation, Release 3.0

You can run commands inside the Docker container by sshing into it using:

make shell
or
docker-compose exec web bash

Then to run the tests inside the Docker container you can run:

pytest

You can also run single commands from your host machine without opening a shell on each container. Here is an
example of running the pytest command on the web container:

docker-compose run web pytest

If you’d like to use a python debugger to interactively debug Django view code, check out the Debugging section.

Note: If you see an error like No such container: addonsserver_web_1 and your containers
are running you can overwrite the base name for docker containers with the COMPOSE_PROJECT_NAME
environment variable. If your container is named localaddons_web_1 you would set
COMPOSE_PROJECT_NAME=localaddons.

Updating your containers

Any time you update Olympia (e.g., by running git pull), you should make sure to update your Docker image and
database with any new requirements or migrations:

docker-compose stop
docker-compose pull
docker-compose up -d
make update_docker # Runs database migrations and rebuilds assets.
On Windows you can substitute `make update_docker` for the following two commands:
docker-compose exec worker make update_deps
docker-compose exec web make update

Gotchas!

Here’s a list of a few of the issues you might face when using Docker.

Can’t access the web server?

Check you’ve created a hosts file entry pointing olympia.test to the relevant IP address.

If containers are failing to start use docker-compose ps to check their running status.

Another way to find out what’s wrong is to run docker-compose logs.

Getting “Programming error [table] doesn’t exist”?

Make sure you’ve run the make initialize_docker step as detailed in the initial setup instructions.

1.3. Server Install 51

olympia Documentation, Release 3.0

ConnectionError during initialize_docker (elasticsearch container fails to start)

When running make initialize_docker without a working elasticsearch container, you’ll get a Con-
nectionError. Check the logs with docker-compose logs. If elasticsearch is complaining about vm.
max_map_count, run this command on your computer or your docker-machine VM:

sudo sysctl -w vm.max_map_count=262144

This allows processes to allocate more memory map areas.

Port collisions (nginx container fails to start)

If you’re already running a service on port 80 or 8000 on your host machine, the nginx container will fail to start.
This is because the docker-compose.override.yml file tells nginx to listen on port 80 and the web service
to listen on port 8000 by default.

This problem will manifest itself by the services failing to start. Here’s an example for the most common case of
nginx not starting due to a collision on port 80:

ERROR: for nginx Cannot start service nginx:.....
...Error starting userland proxy: Bind for 0.0.0.0:80: unexpected error (Failure
→˓EADDRINUSE)
ERROR: Encountered errors while bringing up the project.

You can check what’s running on that port by using (sudo is required if you’re looking at port < 1024):

sudo lsof -i :80

We specify the ports nginx listens on in the docker-compose.override.yml file. If you wish to override
the ports you can do so by creating a new docker-compose config and starting the containers using that config
alongside the default config.

For example if you create a file called docker-compose-ports.yml:

nginx:
ports:
- 8880:80

Next you would stop and start the containers with the following:

docker-compose stop # only needed if running
docker-compose -f docker-compose.yml -f docker-compose-ports.yml up -d

Now the container nginx is listening on 8880 on the host. You can now proxy to the container nginx from the host
nginx with the following nginx config:

server {
listen 80;
server_name olympia.test;
location / {

proxy_pass http://olympia.test:8880;
}

}

52 Chapter 1. Contents

https://stackoverflow.com/a/11685165/4496684

olympia Documentation, Release 3.0

Persisting changes

Please note: any command that would result in files added or modified outside of the addons-server folder (e.g.
modifying pip or npm dependencies) won’t persist, and thus won’t survive after the running container exits.

Note: If you need to persist any changes to the image, they should be carried out via the Dockerfile. Commits to
master will result in the Dockerfile being rebuilt on the Docker hub.

Restarting docker-machine vms following a reboot

If you quit docker-machine, or restart your computer, docker-machine will need to start again using:

docker-machine start addons-dev

You’ll then need to export the variables again, and start the services:

docker-compose up -d

Hacking on the Docker image

If you want to test out changes to the Olympia Docker image locally, use the normal Docker commands such as this
to build a new image:

cd addons-server
docker build -t addons/addons-server .
docker-compose up -d

After you test your new image, commit to master and the image will be published to Docker Hub for other developers
to use after they pull image changes.

1.3.2 Installation with Docker machine

Creating the docker-machine vm

Your first step is to create a vm - this step assumes we’re using virtualbox as the driver:

docker-machine create --driver=virtualbox addons-dev

Then you can export the variables so that docker-compose can talk to the docker service. This command will tell you
how to do that:

docker-machine env addons-dev

On a mac it’s a case of running:

eval $(docker-machine env addons-dev)

Now you have the vm running you can follow the standard docker instructions: Install with Docker

1.3. Server Install 53

https://docs.docker.com/engine/reference/commandline/docker/

olympia Documentation, Release 3.0

Accessing the web-server with docker-machine

If you’re using docker-machine, you can get the ip like so:

docker-machine ip addons-dev

Note: If you’re still using boot2docker then the command is boot2docker ip. At this point you can look at installing
docker-toolbox and migrating your old boot2docker vm across to running via docker-machine. See docker-toolbox for
more info.

Now you can connect to port 80 of that ip address. Here’s an example (your ip might be different):

http://192.168.99.100/

Note: docker-machine hands out IP addresses as each VM boots; your IP addresses can change over time. You
can find out which IP is in use using docker-machine ip [machine name]

The following documentation covers how to install the individual components, this documentation is deprecated in
favour of using Docker. This documentation may be out of date or incomplete.

1.3.3 Install Olympia manually (deprecated)

The approved installation is via Docker. The following pages might be helpful but are deprecated and may be out of
date.

Installing Olympia the long way

Note: The following documentation is deprecated. The approved installation is via Docker.

The following instructions walk you through installing and configuring all required services from scratch.

We’re going to use all the hottest tools to set up a nice environment. Skip steps at your own peril. Here we go!

Requirements

To get started, you’ll need:

• Python 2.7 (2.7 -> 2.7.10)

• Node 0.10.x or higher

• MySQL

• ElasticSearch

• libxml2 (for building lxml, used in tests)

OS X and Ubuntu instructions follow.

There are a lot of advanced dependencies we’re going to skip for a fast start. They have their own section.

54 Chapter 1. Contents

https://www.docker.com/toolbox

olympia Documentation, Release 3.0

If you’re on a Linux distro that splits all its packages into -dev and normal stuff, make sure you’re getting all those
-dev packages.

On Ubuntu

The following command will install the required development files on Ubuntu or, if you’re running a recent version,
you can install them automatically:

sudo apt-get install python-dev python-virtualenv libxml2-dev libxslt1-dev
→˓libmysqlclient-dev memcached libssl-dev swig openssl curl libjpeg-dev zlib1g-dev
→˓libsasl2-dev nodejs nodejs-legacy

Note: As of writing, M2Crypto is only compatible with swig <=3.0.4 version’s. So, if you encounter a libssl exception
while running make full_init, you might have to downgrade swig to version <=3.0.4.

On OS X

The best solution for installing UNIX tools on OS X is Homebrew.

The following packages will get you set for olympia:

brew install python libxml2 mysql libmemcached openssl swig jpeg

Note: As of writing, M2Crypto is only compatible with swig <=3.0.4 version’s. So, if you encounter a libssl exception
while running make full_init, you might have to downgrade swig to version <=3.0.4.

MySQL

You’ll probably need to configure MySQL after install (especially on Mac OS X) according to advanced installation.

See Database for creating and managing the database.

Elasticsearch

You’ll need an Elasticsearch server up and running during the init script. See Elasticsearch for more instructions.

Use the Source

Grab olympia from github with:

git clone git://github.com/mozilla/olympia.git
cd olympia

olympia.git is all the source code. Updating is detailed later on.

1.3. Server Install 55

apt:python-dev,python-virtualenv,libxml2-dev,libxslt1-dev,libmysqlclient-dev,memcached,libssl-dev,swigopenssl,curl,libjpeg-dev,zlib1g-dev,libsasl2-dev
http://brew.sh/

olympia Documentation, Release 3.0

virtualenv and virtualenvwrapper

virtualenv is a tool to create isolated Python environments. This will let you put all of Olympia’s dependencies in a
single directory rather than your global Python directory. For ultimate convenience, we’ll also use virtualenvwrapper
which adds commands to your shell.

Are you ready to bootstrap virtualenv and virtualenvwrapper? Since each shell setup is different, you can install
everything you need and configure your shell using the virtualenv-burrito. Type this:

curl -sL https://raw.github.com/brainsik/virtualenv-burrito/master/virtualenv-burrito.
→˓sh | $SHELL

Open a new shell to test it out. You should have the workon and mkvirtualenv commands.

virtualenvwrapper Hooks (optional)

virtualenvwrapper lets you run hooks when creating, activating, and deleting virtual environments. These hooks
can change settings, the shell environment, or anything else you want to do from a shell script. For complete hook
documentation, see http://www.doughellmann.com/docs/virtualenvwrapper/hooks.html.

You can find some lovely hooks to get started at http://gist.github.com/536998. The hook files should go in
$WORKON_HOME ($HOME/Envs from above), and premkvirtualenv should be made executable.

Getting Packages

Now we’re ready to go, so create an environment for olympia:

mkvirtualenv olympia

That creates a clean environment named olympia using your default python. You can get out of the environment by
restarting your shell or calling deactivate.

To get back into the olympia environment later, type:

workon olympia # requires virtualenvwrapper

Note: Olympia requires Python 2.7.

Note: If you want to use a different Python binary, pass the name (if it is on your path) or the full path to mkvirtualenv
with --python:

mkvirtualenv --python=/usr/local/bin/python2.7 olympia

Finish the install

First make sure you have a recent pip for security reasons:

pip install --upgrade pip

56 Chapter 1. Contents

http://pypi.python.org/pypi/virtualenv
http://www.doughellmann.com/docs/virtualenvwrapper/
http://pypi.python.org/pypi/virtualenv
http://www.doughellmann.com/docs/virtualenvwrapper/
https://github.com/brainsik/virtualenv-burrito
http://www.doughellmann.com/docs/virtualenvwrapper/hooks.html
http://gist.github.com/536998
http://www.pip-installer.org/en/latest/

olympia Documentation, Release 3.0

From inside your activated virtualenv, install the required python packages, initialize the database, create a super user,
compress the assets, . . . :

make full_init

Settings

Most of olympia is already configured in settings.py, but there’s some things you may want to configure locally.
All your local settings go into local_settings.py. The settings template for developers, included below, is at
docs/settings/local_settings.dev.py.

from settings import * # noqa

INTERNAL_IPS = ('127.0.0.1',)

I’m extending INSTALLED_APPS and MIDDLEWARE_CLASSES to include the Django Debug Toolbar. It’s awe-
some, you want it.

The file local_settings.py is for local use only; it will be ignored by git.

Database

By default, Olympia connects to the olympia database running on localhost as the user root, with no password.
To create a database, run:

$ mysql -u root -p
mysql> CREATE DATABASE olympia CHARACTER SET utf8 COLLATE utf8_unicode_ci;

If you want to change settings, you can either add the database settings in your local_settings.py or set the environment
variable DATABASE_URL:

export DATABASE_URL=mysql://<user>:<password>@<hostname>/<database>

If you’ve changed the user and password information, you need to grant permissions to the new user:

$ mysql -u root -p
mysql> GRANT ALL ON olympia.* TO <YOUR_USER>@localhost IDENTIFIED BY '<YOUR_PASSWORD>
→˓';

Finally, to run the test suite, you’ll need to add an extra grant in MySQL for your database user:

$ mysql -u root -p
mysql> GRANT ALL ON test_olympia.* TO <YOUR_USER>@localhost IDENTIFIED BY '<YOUR_
→˓PASSWORD>';

Warning: Don’t forget to change <YOUR_USER> and <YOUR_PASSWORD> to your actual database credentials.

The database is initialized automatically using the make full_init command you saw earlier.

1.3. Server Install 57

http://github.com/mozilla/olympia/tree/master/docs/settings/local_settings.dev.py
https://github.com/django-debug-toolbar/django-debug-toolbar

olympia Documentation, Release 3.0

Database Migrations

Each incremental change we add to the database is done with a versioned SQL (and sometimes Python) file. To keep
your local DB fresh and up to date, run migrations like this:

$ schematic migrations/

If, at some point, you want to start from scratch and recreate the database, you can just run the make
initialize_db command. This will also fake all the schematic migrations, and allow you to create a superuser.

Run the Server

If you’ve gotten the system requirements, downloaded olympia, set up your virtualenv with the compiled packages,
and configured your settings and database, you’re good to go.

./manage.py runserver

Note: If you don’t have a LESS compiler already installed, opening http://localhost:8000 in your browser will raise
a 500 server error. If you don’t want to run through the Manual installation documentation just right now, you can
disable all LESS pre-processing by adding the following line to your local_settings.py file:

LESS_PREPROCESS = False

Be aware, however, that this will make the site VERY slow, as a huge amount of LESS files will be served to your
browser on EACH request, and each of those will be compiled on the fly by the LESS javascript compiler.

Create an Admin User

To connect to the site, you first need to register a new user “the standard way” by filling in the registration form.

Once this is done, you can either activate this user using the link in the confirmation email sent (it’s displayed in the
console, check your server logs), or use the following handy management command:

./manage.py activate_user <email of your user>

If you want to grant yourself admin privileges, pass in the --set-admin option:

./manage.py activate_user --set-admin <email of your user>

Updating

To run a full update of olympia (including source files, pip requirements and database migrations):

make full_update

If you want to do it manually, then check the Makefile.

The Contributing page has more on managing branches.

58 Chapter 1. Contents

https://github.com/mozilla/schematic
http://localhost:8000

olympia Documentation, Release 3.0

Contact

Come talk to us on irc://irc.mozilla.org/amo if you have questions, issues, or compliments.

Submitting a Patch

See the Contributing page.

Advanced Installation

In production we use things like memcached, rabbitmq + celery, elasticsearch, LESS, and Stylus. Learn more about
installing these on the Manual installation page.

Note: Although we make an effort to keep advanced items as optional installs you might need to install some
components in order to run tests or start up the development server.

Manual installation

Note: The following documentation is deprecated. The approved installation is via Docker.

Getting Fancy

MySQL

On your dev machine, MySQL probably needs some tweaks. Locate your my.cnf (or create one) then, at the very least,
make UTF8 the default encoding:

[mysqld]
character-set-server=utf8

Here are some other helpful settings:

[mysqld]
default-storage-engine=innodb
character-set-server=utf8
skip-sync-frm=OFF
innodb_file_per_table

On Mac OS X with homebrew, put my.cnf in /usr/local/Cellar/mysql/5.5.15/my.cnf then restart like:

launchctl unload -w ~/Library/LaunchAgents/com.mysql.mysqld.plist
launchctl load -w ~/Library/LaunchAgents/com.mysql.mysqld.plist

Note: some of the options above were renamed between MySQL versions

Here are more tips for optimizing MySQL on your dev machine.

1.3. Server Install 59

irc://irc.mozilla.org/amo
http://bonesmoses.org/2011/02/28/mysql-isnt-yoursql/

olympia Documentation, Release 3.0

Memcached

We slipped this in with the basic install. The package was memcached on Ubuntu and libmemcached on OS X.
Your default settings already use the following, so you shouldn’t need to change anything:

CACHES = {
'default': {

'BACKEND': 'caching.backends.memcached.MemcachedCache',
'LOCATION': ['localhost:11211'],
'TIMEOUT': 500,

}
}

RabbitMQ and Celery

See the Celery page for installation instructions. The example settings set CELERY_ALWAYS_EAGER = True. If
you’re setting up Rabbit and want to use celery, make sure you remove that line from your local_settings.
py.

Elasticsearch

See Elasticsearch for more instructions.

Redis

On OS X the package is called redis. Get it running with the launchctl script included in homebrew. To let
olympia know about Redis, add this to local_settings.py:

CACHE_MACHINE_USE_REDIS = True
REDIS_BACKEND = 'redis://'

The REDIS_BACKEND is parsed like CACHE_BACKEND if you need something other than the default settings.

Node.js

Node.js is needed for Stylus and LESS, which in turn are needed to precompile the CSS files.

If you want to serve the CSS files from another domain than the webserver, you will need to precompile them. Oth-
erwise you can have them compiled on the fly, using javascript in your browser, if you set LESS_PREPROCESS =
False in your local settings.

First, we need to install node and npm:

brew install node
curl https://www.npmjs.org/install.sh | sh

Optionally make the local scripts available on your path if you don’t already have this in your profile:

export PATH="./node_modules/.bin/:${PATH}"

Not working?

60 Chapter 1. Contents

http://nodejs.org/

olympia Documentation, Release 3.0

• If you’re having trouble installing node, try http://shapeshed.com/journal/
setting-up-nodejs-and-npm-on-mac-osx/. You need brew, which we used earlier.

• If you’re having trouble with npm, check out the README on https://github.com/isaacs/npm

Stylus CSS

Learn about Stylus at http://learnboost.github.com/stylus/

cd olympia
npm install

In your local_settings.py ensure you are pointing to the correct executable for stylus:

STYLUS_BIN = path('node_modules/stylus/bin/stylus')

LESS CSS

We’re slowing switching over from regular CSS to LESS. You can learn more about LESS at http://lesscss.org.

If you already ran npm install you don’t need to do anything more.

In your local_settings.py ensure you are pointing to the correct executable for less:

LESS_BIN = path('node_modules/less/bin/lessc')

You can make the CSS live refresh on save by adding #!watch to the URL or by adding the following to your
local_settings.py:

LESS_LIVE_REFRESH = True

If you want syntax highlighting, try:

• vim: http://leafo.net/lessphp/vim/

• emacs: http://jdhuntington.com/emacs/less-css-mode.el

• TextMate: https://github.com/appden/less.tmbundle

• Coda: http://groups.google.com/group/coda-users/browse_thread/thread/b3327b0cb893e439?pli=1

Generating additional add-ons

Note: If you previously used the make full_init command during the Installing Olympia the long way process,
it’s not necessary to generate additional add-ons for initialisation/development purpose.

If you need more add-ons, you can generate additional ones using the following command:

python manage.py generate_addons <num_addons> [--owner <email>] [--app <application>]

where num_addons is the number of add-ons that you want to generate, email (optional) is the email address of
the owner of the generated add-ons and application (optional) the name of the application (either firefox,
thunderbird, seamonkey or android).

1.3. Server Install 61

http://shapeshed.com/journal/setting-up-nodejs-and-npm-on-mac-osx/
http://shapeshed.com/journal/setting-up-nodejs-and-npm-on-mac-osx/
https://github.com/isaacs/npm
http://learnboost.github.com/stylus/
http://lesscss.org
http://leafo.net/lessphp/vim/
http://jdhuntington.com/emacs/less-css-mode.el
https://github.com/appden/less.tmbundle
http://groups.google.com/group/coda-users/browse_thread/thread/b3327b0cb893e439?pli=1

olympia Documentation, Release 3.0

By default the email will be nobody@mozilla.org and the application will be firefox if not specified.

Add-ons will have 1 preview image, 2 translations (French and Spanish), 5 ratings and might be featured randomly.

If you didn’t run the make full_init command during the Installing Olympia the long way process, categories
from production (Alerts & Updates, Appearance, and so on) will be created and randomly populated with generated
add-ons. Otherwise, the existing categories will be filled with newly generated add-ons.

Celery

Note: The following documentation is deprecated. The approved installation is via Docker.

Celery is a task queue powered by RabbitMQ. You can use it for anything that doesn’t need to complete in the current
request-response cycle. Or use it wherever Les tells you to use it.

For example, each addon has a current_version cached property. This query on initial run causes strain on our
database. We can create a denormalized database field called current_version on the addons table.

We’ll need to populate regularly so it has fairly up-to-date data. We can do this in a process outside the request-
response cycle. This is where Celery comes in.

Installation

RabbitMQ

Celery depends on RabbitMQ. If you use homebrew you can install this:

brew install rabbitmq

Setting up rabbitmq invovles some configuration. You may want to define the following

On a Mac, you can find this in System Preferences > Sharing
export HOSTNAME='<laptop name>.local'

Then run the following commands:

Set your host up so it's semi-permanent
sudo scutil --set HostName $HOSTNAME

Update your hosts by either:
1) Manually editing /etc/hosts
2) `echo 127.0.0.1 $HOSTNAME >> /etc/hosts`

RabbitMQ insists on writing to /var
sudo rabbitmq-server -detached

Setup rabitty things (sudo is required to read the cookie file)
sudo rabbitmqctl add_user olympia olympia
sudo rabbitmqctl add_vhost olympia
sudo rabbitmqctl set_permissions -p olympia olympia ".*" ".*" ".*"

Back in safe and happy django-land you should be able to run:

celery -A olympia worker -E

62 Chapter 1. Contents

http://celeryproject.org/
http://decafbad.com/blog/2008/07/04/queue-everything-and-delight-everyone

olympia Documentation, Release 3.0

Celery understands python and any tasks that you have defined in your app are now runnable asynchronously.

Celery Tasks

Any python function can be set as a celery task. For example, let’s say we want to update our current_version
but we don’t care how quickly it happens, just that it happens. We can define it like so:

@task(rate_limit='2/m')
def _update_addons_current_version(data, **kw):

task_log.debug("[%s@%s] Updating addons current_versions." %
(len(data), _update_addons_current_version.rate_limit))

for pk in data:
try:

addon = Addon.objects.get(pk=pk)
addon.update_version()

except Addon.DoesNotExist:
task_log.debug("Missing addon: %d" % pk)

@task is a decorator for Celery to find our tasks. We can specify a rate_limit like 2/m which means celery
will only run this command 2 times a minute at most. This keeps write-heavy tasks from killing your database.

If we run this command like so:

from celery.task.sets import TaskSet

all_pks = Addon.objects.all().values_list('pk', flat=True)
ts = [_update_addons_current_version.subtask(args=[pks])

for pks in amo.utils.chunked(all_pks, 300)]
TaskSet(ts).apply_async()

All the Addons with ids in pks will (eventually) have their current_versions updated.

Cron Jobs

This is all good, but let’s automate this. In Olympia we can create cron jobs like so:

@cronjobs.register
def update_addons_current_version():

"""Update the current_version field of the addons."""
d = Addon.objects.valid().exclude(

type=amo.ADDON_PERSONA).values_list('id', flat=True)

with establish_connection() as conn:
for chunk in chunked(d, 1000):

print chunk
_update_addons_current_version.apply_async(args=[chunk],

connection=conn)

This job will hit all the addons and run the task we defined in small batches of 1000.

We’ll need to add this to both the prod and preview crontabs so that they can be run in production.

Better than Cron

Of course, cron is old school. We want to do better than cron, or at least not rely on brute force tactics.

1.3. Server Install 63

olympia Documentation, Release 3.0

For a surgical strike, we can call _update_addons_current_version any time we add a new version to that
addon. Celery will execute it at the prescribed rate, and your data will be updated . . . eventually.

During Development

celery only knows about code as it was defined at instantiation time. If you change your @task function, you’ll
need to HUP the process.

However, if you’ve got the @task running perfectly you can tweak all the code, including cron jobs that call it without
need of restart.

Elasticsearch

Note: The following documentation is deprecated. The approved installation is via Docker.

Elasticsearch is a search server. Documents (key-values) get stored, configurable queries come in, Elasticsearch scores
these documents, and returns the most relevant hits.

Also check out elasticsearch-head, a plugin with web front-end to elasticsearch that can be easier than talking to
elasticsearch over curl, or Marvel, which includes a query editors with autocompletion.

Installation

Elasticsearch comes with most package managers.:

brew install elasticsearch # or whatever your package manager is called.

If Elasticsearch isn’t packaged for your system, you can install it manually, here are some good instructions on how to
do so.

On Ubuntu, you should just download and install a .deb from the download page.

Launching and Setting Up

Launch the Elasticsearch service. If you used homebrew, brew info elasticsearch will show you the com-
mands to launch. If you used aptitude, Elasticsearch will come with a start-stop daemon in /etc/init.d. On Ubuntu, if
you have installed from a .deb, you can type:

sudo service elasticsearch start

Olympia has commands that sets up mappings and indexes objects such as add-ons and apps for you. Setting up the
mappings is analogous to defining the structure of a table, indexing is analogous to storing rows.

For AMO, this will set up all indexes and start the indexing processeses:

./manage.py reindex

Or you could use the makefile target:

make reindex

If you need to add arguments:

64 Chapter 1. Contents

http://mobz.github.io/elasticsearch-head/
http://www.elasticsearch.org/overview/marvel/
http://www.elasticsearch.org/guide/en/elasticsearch/guide/current/_installing_elasticsearch.html
http://www.elasticsearch.org/guide/en/elasticsearch/guide/current/_installing_elasticsearch.html
http://www.elasticsearch.org/download/

olympia Documentation, Release 3.0

make ARGS='--with-stats --wipe --force' reindex

Indexing

Olympia has other indexing commands. It is worth noting that the index is maintained incrementally through post_save
and post_delete hooks:

./manage.py cron reindex_addons # Index all the add-ons.

./manage.py index_stats # Index all the update and download counts.

./manage.py cron reindex_collections # Index all the collections.

./manage.py cron reindex_users # Index all the users.

./manage.py cron compatibility_report # Set up the compatibility index.

./manage.py weekly_downloads # Index weekly downloads.

Querying Elasticsearch in Django

For now, we have our own query builder (which is an historical clone of elasticutils), but we will switch to the official
one very soon.

We attach elasticutils to Django models with a mixin. This lets us do things like .search() which returns an object
which acts a lot like Django’s ORM’s object manager. .filter(**kwargs) can be run on this search object:

query_results = list(
MyModel.search().filter(my_field=a_str.lower())
.values_dict('that_field'))

Testing with Elasticsearch

All test cases using Elasticsearch should inherit from amo.tests.ESTestCase. All such tests are marked with
the es_tests pytest marker. To run only those tests:

pytest -m es_tests

or

make test_es

Troubleshooting

I got a CircularReference error on .search() - check that a whole object is not being passed into the filters, but rather
just a field’s value.

I indexed something into Elasticsearch, but my query returns nothing - check whether the query contains upper-case
letters or hyphens. If so, try lowercasing your query filter. For hyphens, set the field’s mapping to not be analyzed:

1.3. Server Install 65

http://github.com/mozilla/elasticutils
http://pytest.org/latest/

olympia Documentation, Release 3.0

'my_field': {'type': 'string', 'index': 'not_analyzed'}

Try running .values_dict on the query as mentioned above.

Trouble-shooting the development installation

Note: The following documentation is deprecated. The approved installation is via Docker.

Image processing isn’t working

If adding images to apps or extensions doesn’t seem to work then there’s a couple of settings you should check.

Checking your image settings

Check that CELERY_ALWAYS_EAGER is set to True in your settings file. This means it will process tasks without a
celery worker running:

CELERY_ALWAYS_EAGER = True

If that yields no joy you can try running a celery worker in the foreground, set CELERY_ALWAYS_EAGER = False
and run:

celery -A olympia worker -E

Note: This requires a RabbitMQ server to be set up as detailed in the Celery instructions.

This may help you to see where the image processing tasks are failing. For example it might show that Pillow is failing
due to missing dependencies.

Checking your Pillow installation (Ubuntu)

When you run you should see at least JPEG and ZLIB are supported

If that’s the case you should see this in the output of pip install -I Pillow:

--

*** TKINTER support not available
--- JPEG support available
--- ZLIB (PNG/ZIP) support available

*** FREETYPE2 support not available

*** LITTLECMS support not available
--

If you don’t then this suggests Pillow can’t find your image libraries:

To fix this double-check you have the necessary development libraries installed first (e.g: sudo apt-get
install libjpeg-dev zlib1g-dev)

Now run the following for 32bit:

66 Chapter 1. Contents

olympia Documentation, Release 3.0

sudo ln -s /usr/lib/i386-linux-gnu/libz.so /usr/lib
sudo ln -s /usr/lib/i386-linux-gnu/libjpeg.so /usr/lib

Or this if your running 64bit:

sudo ln -s /usr/lib/x86_64-linux-gnu/libz.so /usr/lib
sudo ln -s /usr/lib/x86_64-linux-gnu/libjpeg.so /usr/lib

Note: If you don’t know what arch you are running run uname -m if the output is x86_64 then it’s 64-bit, otherwise
it’s 32bit e.g. i686

Now re-install Pillow:

pip install -I Pillow

And you should see the necessary image libraries are now working with Pillow correctly.

ES is timing out

This can be caused by number_of_replicas not being set to 0 for the local indexes.

To check the settings run:

curl -s localhost:9200/_cluster/state\?pretty | fgrep number_of_replicas -B 5

If you see any that aren’t 0 do the following:

Set ES_DEFAULT_NUM_REPLICAS to 0 in your local settings.

To set them to zero immediately run:

curl -XPUT localhost:9200/_settings -d '{ "index" : { "number_of_replicas" : 0 } }'

1.4 Development

1.4.1 Running Tests

Run tests from outside the docker container with make:

make test

Other, more niche, test commands:

make test_failed # rerun the failed tests from the previous run
make test_force_db # run the entire test suite with a new database
make tdd # run the entire test suite, but stop on the first error

Using pytest directly

For advanced users. To run the entire test suite you never need to use pytest directly.

1.4. Development 67

olympia Documentation, Release 3.0

You can connect to the docker container using make shell; then use pytest directly, which allows for finer-
grained control of the test suite.

Run your tests like this:

pytest

For running subsets of the entire test suite, you can specify which tests run using different methods:

• pytest -m es_tests to run the tests that are marked as es_tests

• pytest -k test_no_license to run all the tests that have test_no_license in their name

• pytest src/olympia/addons/tests/test_views.py::TestLicensePage::test_no_license to run this specific test

For more, see the Pytest usage documentation.

1.4.2 Debugging

The docker setup uses supervisord to run the django runserver. This means if you want to access the management
server from a shell to run things like ipdb you still can.

Using ipdb

As with ipdb normally just add a line in your code at the relevant point:

import ipdb; ipdb.set_trace()

Next connect to the running web container:

make debug

This will bring the Django management server to the foreground and you can interact with ipdb as you would normally.
To quit you can just type Ctrl+c.

All being well it should look like this:

$ make debug
docker exec -t -i olympia_web_1 supervisorctl fg olympia
:/opt/rh/python27/root/usr/lib/python2.7/site-packages/celery/utils/__init__.py:93
11:02:08 py.warnings:WARNING /opt/rh/python27/root/usr/lib/python2.7/site-packages/
→˓jwt/api_jws.py:118: DeprecationWarning: The verify parameter is deprecated. Please
→˓use options instead.
'Please use options instead.', DeprecationWarning)
:/opt/rh/python27/root/usr/lib/python2.7/site-packages/jwt/api_jws.py:118
[21/Oct/2015 11:02:08] "PUT /en-US/firefox/api/v3/addons/%40unlisted/versions/0.0.5/
→˓HTTP/1.1" 400 36
Validating models...

0 errors found
October 21, 2015 - 13:52:07
Django version 1.6.11, using settings 'settings'
Starting development server at http://0.0.0.0:8000/
Quit the server with CONTROL-C.
[21/Oct/2015 13:57:56] "GET /static/img/app-icons/16/sprite.png HTTP/1.1" 200 3810
13:58:01 py.warnings:WARNING /opt/rh/python27/root/usr/lib/python2.7/site-packages/
→˓celery/task/sets.py:23: CDeprecationWarning:

(continues on next page)

68 Chapter 1. Contents

http://pytest.org/latest/mark.html
http://pytest.org/latest/usage.html#specifying-tests-selecting-tests
https://pypi.python.org/pypi/ipdb

olympia Documentation, Release 3.0

(continued from previous page)

celery.task.sets and TaskSet is deprecated and scheduled for removal in
version 4.0. Please use "group" instead (see the Canvas section in the userguide)

""")
:/opt/rh/python27/root/usr/lib/python2.7/site-packages/celery/utils/__init__.py:93
> /code/src/olympia/browse/views.py(148)themes()

147 import ipdb;ipdb.set_trace()
--> 148 TYPE = amo.ADDON_THEME

149 if category is not None:

ipdb> n
> /code/src/olympia/browse/views.py(149)themes()

148 TYPE = amo.ADDON_THEME
--> 149 if category is not None:

150 q = Category.objects.filter(application=request.APP.id, type=TYPE)

ipdb>

Logging

Logs for the celery and Django processes can be found on your machine in the logs directory.

Using the Django Debug Toolbar

The Django Debug Toolbar is very powerful and useful when viewing pages from the website, to check the view used,
its parameters, the SQL queries, the templates rendered and their context.

To use it please see the official getting started docs: https://django-debug-toolbar.readthedocs.io/en/1.4/installation.
html#quick-setup

Note: You must know that using the Django Debug Toolbar will slow the website quite a lot. You can mitigate this
by deselecting the checkbox next to the SQL panel.

Also, please note that you should only use the Django Debug Toolbar if you need it, as it makes CSP report only for
your local dev.

Note: You might have to disable CSP by setting CSP_REPORT_ONLY = True in your local settings because django
debug toolbar uses “data:” for its logo, and it uses “unsafe eval” for some panels like the templates or SQL ones.

1.4.3 Adding Python Dependencies

To add a new dependency you’ll to carry out the following. First install hashin:

pip install hashin

Next add the dependency you want to add to the relevant requirements file.

Note: If you add just the package name the script will automatically get the latest version for you.

1.4. Development 69

http://django-debug-toolbar.readthedocs.io/
https://django-debug-toolbar.readthedocs.io/en/1.4/installation.html#quick-setup
https://django-debug-toolbar.readthedocs.io/en/1.4/installation.html#quick-setup

olympia Documentation, Release 3.0

Once you’ve done that you can run the requirements script:

./scripts/hash_requirements.py <requirement-file>

This will add hashes and sort the requirements for you adding comments to show any package dependencies.

When it’s run check the diff and make edits to fix any issues before submitting a PR with the additions.

1.4.4 Error Pages

When running Django locally you get verbose error pages instead of the standard ones. To access the HTML for the
standard error pages, you can access the urls:

/services/403
/services/404
/services/500

1.4.5 Testing

We’re using a mix of Django’s Unit Testing and pytest with pytest-django, and Selenium for our automated testing.
This gives us a lot of power and flexibility to test all aspects of the site.

Configuration

Configuration for your unit tests is handled automatically. The only thing you’ll need to ensure is that the database
credentials in your settings has full permissions to modify a database with test_ prepended to it. By default the
database name is olympia, so the test database is test_olympia. Optionally, in particular if the code you are
working on is related to search, you’ll want to run Elasticsearch tests. Obviously, you need Elasticsearch to be installed.
See Elasticsearch page for details.

If you don’t want to run the Elasticsearch tests, you can use the test_no_es target in the Makefile:

make test_no_es

On the contrary, if you only want to run Elasticsearch tests, use the test_es target:

make test_es

Running Tests

To run the whole test suite use:

pytest

There are a lot of options you can pass to adjust the output. Read pytest and pytest-django docs for the full set, but
some common ones are:

• -v to provide more verbose information about the test run

• -s tells pytest to not capture the logging output

• --create-db tells pytest-django to recreate the database instead of reusing the one from the previous run

• -x --pdb to stop on the first failure, and drop into a python debugger

70 Chapter 1. Contents

http://docs.djangoproject.com/en/dev/topics/testing
http://pytest.org/latest/
https://pytest-django.readthedocs.io/en/latest/
http://www.seleniumhq.org/
http://pytest.org/latest/
https://pytest-django.readthedocs.io/en/latest/

olympia Documentation, Release 3.0

• --lf to re-run the last test failed

• -m test_es will only run tests that are marked with the test_es mark

• -k foobar will only run tests that contain foobar in their name

There are a few useful makefile targets that you can use:

Run all the tests:

make test

If you need to rebuild the database:

make test_force_db

To fail and stop running tests on the first failure:

make tdd

If you wish to add arguments, or run a specific test, overload the variables (check the Makefile for more information):

make test ARGS='-v src/olympia/amo/tests/test_url_prefix.py::MiddlewareTest::test_get_
→˓app'

If you wish to re-run only the tests failed from the previous run:

make test_failed

Selenium Integration Tests

To run the selenium based tests outside of the docker container use the following command:

docker-compose exec --user root selenium-firefox tox -e ui-tests

WARNING: This will WIPE the database as the test will create specific data for itself to look for. If you have anything
you don’t want to be deleted, please do not run these tests.

For more detailed information on the integration tests, please see the Readme within the tests/ui directory.

Database Setup

Our test runner is configured by default to reuse the database between each test run. If you really want to make a new
database (e.g. when models have changed), use the --create-db parameter:

pytest --create-db

or

make test_force_db

Writing Tests

We support two types of automated tests right now and there are some details below but remember, if you’re confused
look at existing tests for examples.

1.4. Development 71

olympia Documentation, Release 3.0

Also, take some time to get familiar with pytest way of dealing with dependency injection, which they call fixtures
(which should not be confused with Django’s fixtures). They are very powerful, and can make your tests much more
independent, cleaner, shorter, and more readable.

Unit/Functional Tests

Most tests are in this category. Our test classes extend django.test.TestCase and follow the standard rules for
unit tests. We’re using JSON fixtures for the data.

Selenium Integration Tests

The Selenium tests are written using a Page Object Model via PyPom. Please view the documentation there to help
you write integration tests.

External calls

Connecting to remote services in tests is not recommended, developers should mock out those calls instead.

Why Tests Fail

Tests usually fail for one of two reasons: The code has changed or the data has changed. An third reason is time.
Some tests have time-dependent data usually in the fixtures. For example, some featured items have expiration dates.

We can usually save our future-selves time by setting these expirations far in the future.

Localization Tests

If you want test that your localization works then you can add in locales in the test directory. For an example see
devhub/tests/locale. These locales are not in the normal path so should not show up unless you add them
to the LOCALE_PATH. If you change the .po files for these test locales, you will need to recompile the .mo files
manually, for example:

msgfmt --check-format -o django.mo django.po

1.4.6 Style Guide

Writing code for olympia? Awesome! Please help keep our code readable by, whenever possible, adhering to these
style conventions.

Python

• see https://wiki.mozilla.org/Webdev:Python

72 Chapter 1. Contents

http://pytest.org/latest/
http://pytest.org/latest/fixture.html
http://www.seleniumhq.org/
http://pypom.readthedocs.io/en/latest/
http://pypi.python.org/pypi/mock
https://wiki.mozilla.org/Webdev:Python

olympia Documentation, Release 3.0

Markup

• <!DOCTYPE html>

• double-quote attributes

• Soft tab (2 space) indentation

• Title-Case <label> tags - “Display Name” vs “Display name”

• to clearfix, use the class c on an element

JavaScript

• Soft tabs (4 space) indentation

• Single quotes around strings (unless the string contains single quotes)

• variable names for jQuery objects start with $. for example:

– var $el = $(el);

• Element IDs and classes that are not generated by Python should be separated by hyphens, eg: #some-module.

• Protect all functions and objects from global scope to avoid potential name collisions. When exposing functions
to other scripts use the z namespace.

• Always protect code from loading on pages it’s not supposed to load on. For example:

$(document).ready(function() {
if ($('#something-on-your-page').length) {

initYourCode();
}

function initYourCode() {
// ...

}
});

1.4.7 Contributing

If you’re not sure this is the correct place to file an issue then please file an issue on the mozilla/addons project instead.

Before contributing code, please note:

• You agree to license your contributions under the license.

• Please ask on the dev-addons mailing list before submitting pull-requests for new features or large changes that
are not related to existing issues.

• Follow PEP8, jshint and our other style guide conventions.

• Please write tests and read the docs on addons-server.

Ready to get started? Follow these steps.

Note to staff: If you come across a potential “good first bug” for contributors, please tag it with “maybe good
first bug”. The community team triages these every other week to ensure they have mentors assigned, onboarding
information, and basic steps to get started. This gives new contributors a better experience when they pick a “good
first bug” to work on.

Thank you for contributing!

1.4. Development 73

https://github.com/mozilla/addons/issues/new
https://github.com/mozilla/addons-server/blob/master/LICENSE
https://mail.mozilla.org/listinfo/dev-addons
https://www.python.org/dev/peps/pep-0008/
http://www.jshint.com/
https://mozweb.readthedocs.io/en/latest/
https://addons-server.readthedocs.io/en/latest/
https://wiki.mozilla.org/Add-ons/Contribute/Code
https://wiki.mozilla.org/Add-ons/Contribute/Goodfirstbugs_triage

olympia Documentation, Release 3.0

1.4.8 Push From Master

We deploy from the master branch once a month. If you commit something to master that needs additional QA time,
be sure to use a waffle feature flag.

Local Branches

Most new code is developed in local one-off branches, usually encompassing one or two patches to fix a bug. Upstream
doesn’t care how you do local development, but we don’t want to see a merge commit every time you merge a single
patch from a branch. Merge commits make for a noisy history, which is not fun to look at and can make it difficult
to cherry-pick hotfixes to a release branch. We do like to see merge commits when you’re committing a set of related
patches from a feature branch. The rule of thumb is to rebase and use fast-forward merge for single patches or a branch
of unrelated bug fixes, but to use a merge commit if you have multiple commits that form a cohesive unit.

Here are some tips on Using topic branches and interactive rebasing effectively.

1.4.9 Using the VPN with docker on OSX

If you need to access services behind a VPN, the docker setup should by default allow outgoing traffic over the VPN
as it does for your host. If this isn’t working you might find that it will work if you start up the vm after you have
started the VPN connection.

To do this simply stop the containers:

docker-compose stop

Stop the docker-machine vm:

Assumes you've called the vm 'addons-dev'
docker-machine stop addons-dev

Then connect to your VPN and restart the docker vm:

docker-machine start addons-dev

and fire up the env containers again:

docker-compose up -d

1.4.10 Access Control Lists

ACL versus Django Permissions

Currently we use the is_superuser flag in the User model to indicate that a user can access the admin site.

Outside of that we use the access.models.GroupUser to define what access groups a user is a part of.

How permissions work

Permissions that you can use as filters can be either explicit or general.

For example Admin:EditAddons means only someone with that permission will validate.

If you simply require that a user has some permission in the Admin group you can use Admin:%. The % means “any.”

74 Chapter 1. Contents

http://github.com/mozilla/olympia/tree/master
https://github.com/jsocol/django-waffle
http://blog.mozilla.com/webdev/2011/11/21/git-using-topic-branches-and-interactive-rebasing-effectively/
http://docs.djangoproject.com/en/dev/topics/auth/#django.contrib.auth.models.User.is_superuser
http://docs.djangoproject.com/en/dev/topics/auth/#django.contrib.auth.models.User

olympia Documentation, Release 3.0

Similarly a user might be in a group that has explicit or general permissions. They may have Admin:EditAddons
which means they can see things with that same permission, or things that require Admin:%.

If a user has a wildcard, they will have more permissions. For example, Admin:* means they have permission to see
anything that begins with Admin:.

The notion of a superuser has a permission of *:* and therefore they can see everything.

1.4.11 Logging

Logging is fun. We all want to be lumberjacks. My muscle-memory wants to put print statements everywhere,
but it’s better to use log.debug instead. print statements make mod_wsgi sad, and they’re not much use in
production. Plus, django-debug-toolbar can hijack the logger and show all the log statements generated during
the last request. When DEBUG = True, all logs will be printed to the development console where you started the
server. In production, we’re piping everything into mozlog.

Configuration

The root logger is set up from log_settings_base.py in the src/olympia/lib of addons-server. It sets up
sensible defaults, but you can twiddle with these settings:

LOG_LEVEL This setting is required, and defaults to logging.DEBUG, which will let just about anything pass
through. To reconfigure, import logging in your settings file and pick a different level:

import logging
LOG_LEVEL = logging.WARN

USE_MOZLOG Set this to True if you want logging sent to the console using mozlog format.

LOGGING See PEP 391 and log_settings.py for formatting help. Each section of LOGGING will get merged
into the corresponding section of log_settings.py. Handlers and log levels are set up automatically based on
LOG_LEVEL and DEBUG unless you set them here. Messages will not propagate through a logger unless
propagate: True is set.

LOGGING = {
'loggers': {

'caching': {'handlers': ['null']},
},

}

If you want to add more to this in local_settings.py, do something like this:

LOGGING['loggers'].update({
'z.paypal': {

'level': logging.DEBUG,
},
'z.es': {

'handlers': ['null'],
},

})

Using Loggers

The olympia.core.logger package uses global objects to make the same logging configuration available to all
code loaded in the interpreter. Loggers are created in a pseudo-namespace structure, so app-level loggers can inherit

1.4. Development 75

olympia Documentation, Release 3.0

settings from a root logger. olympia’s root namespace is just "z", in the interest of brevity. In the caching package,
we create a logger that inherits the configuration by naming it "z.caching":

import olympia.core.logger

log = olympia.core.logger.getLogger('z.caching')

log.debug("I'm in the caching package.")

Logs can be nested as much as you want. Maintaining log namespaces is useful because we can turn up the logging
output for a particular section of olympia without becoming overwhelmed with logging from all other parts.

olympia.core.logging vs. logging

olympia.core.logger.getLogger should be used everywhere. It returns a LoggingAdapter that inserts
the current user’s IP address and username into the log message. For code that lives outside the request-response cycle,
it will insert empty values, keeping the message formatting the same.

Complete logging docs: http://docs.python.org/library/logging.html

1.4.12 Services

Services contain a couple of scripts that are run as separate wsgi instances on the services. Usually they are hosted on
separate domains. They are stand alone wsgi scripts. The goal is to avoid a whole pile of Django imports, middleware,
sessions and so on that we really don’t need.

To run the scripts you’ll want a wsgi server. You can do this using gunicorn, for example:

pip install gunicorn

Then you can do:

cd services
gunicorn --log-level=DEBUG -c wsgi/receiptverify.py -b 127.0.0.1:9000 --debug
→˓verify:application

To test:

curl -d "this is a bogus receipt" http://127.0.0.1:9000/verify/123

1.4.13 Translating Fields on Models

The olympia.translations app defines a olympia.translations.models.Translation model,
but for the most part, you shouldn’t have to use that directly. When you want to create a foreign key to
the translations table, use olympia.translations.fields.TranslatedField. This subclasses
Django’s django.db.models.ForeignKey to make it work with our special handling of translation rows.

A minimal model with translations in addons-server would look like this:

from django.db import models

from olympia.amo.models import ModelBase
from olympia.translations.fields import TranslatedField, save_signal

(continues on next page)

76 Chapter 1. Contents

http://docs.python.org/library/logging.html
http://gunicorn.org/
http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey

olympia Documentation, Release 3.0

(continued from previous page)

class MyModel(ModelBase):
description = TranslatedField()

models.signals.pre_save.connect(save_signal,
sender=MyModel,
dispatch_uid='mymodel_translations')

How it works behind the scenes

As mentioned above, a TranslatedField is actually a ForeignKey to the translations table. However,
to support multiple languages, we use a special feature of MySQL allowing you to have a ForeignKey pointing to
multiple rows.

When querying

Our base manager has a _with_translations() method that is automatically called when you instanciate a
queryset. It does 2 things:

• Stick an extra lang=lang in the query to prevent query caching from returning objects in the wrong language

• Call olympia.translations.transformers.get_trans() which does the black magic.

get_trans() is called, and calls in turn olympia.translations.transformer.build_query() and
builds a custom SQL query. This query is the heart of the magic. For each field, it setups a join on the translations
table, trying to find a translation in the current language (using olympia.translation.get_language())
and then in the language returned by get_fallback() on the instance (for addons, that’s default_locale; if
the get_fallback() method doesn’t exist, it will use settings.LANGUAGE_CODE, which should be en-US
in addons-server).

Only those 2 languages are considered, and a double join + IF / ELSE is done every time, for each field.

This query is then ran on the slave (get_trans() gets a cursor using connections[multidb.
get_slave()]) to fetch the translations, and some Translation objects are instantiated from the results and set
on the instance(s) of the original query.

To complete the mechanism, TranslationDescriptor.__get__ returns the Translation, and
Translations.__unicode__ returns the translated string as you’d expect, making the whole thing transpar-
ent.

When setting

Everytime you set a translated field to a string value, TranslationDescriptor __set__ method is called.
It determines which method to call (because you can also assign a dict with multiple translations in multiple lan-
guages at the same time). In this case, it calls translation_from_string() method, still on the “hid-
den” TranslationDescriptor instance. The current language is passed at this point, using olympia.
translation_utils.get_language().

From there, translation_from_string() figures out whether it’s a new translation of a field we had no trans-
lation for, a new translation of a field we already had but in a new language, or an update to an existing translation.

It instantiates a new Translation object with the correct values if necessary, or just updates the correct one. It then
places that object in a queue of Translation instances to be saved later.

1.4. Development 77

olympia Documentation, Release 3.0

When you eventually call obj.save(), the pre_save signal is sent. If you followed the example above, that means
olympia.translations.fields.save_signal is then called, and it unqueues all Translation objects and
saves them. It’s important to do this on pre_save to prevent foreign key constraint errors.

When deleting

Deleting all translations for a field is done using olympia.translations.models.
delete_translation(). It sets the field to NULL and then deletes all the attached translations.

Deleting a specific translation (like a translation in spanish, but keeping the english one intact) is implemented but not
recommended at the moment. The reason why is twofold:

1. MySQL doesn’t let you delete something that still has a FK pointing to it, even if there are other rows that match
the FK. When you call delete() on a translation, if it was the last translation for that field, we set the FK to
NULL and delete the translation normally. However, if there were any other translations, instead we temporarily
disable the constraints to let you delete just the one you want.

2. Remember how fetching works? If you deleted a translation that is part of the fallback, then when you fetch
that object, depending on your locale you’ll get an empty string for that field, even if there are Translation
objects in other languages available!

For additional discussion on this topic, see https://bugzilla.mozilla.org/show_bug.cgi?id=902435

Ordering by a translated field

olympia.translations.query.order_by_translation allows you to order a QuerySet by a trans-
lated field, honoring the current and fallback locales like it’s done when querying.

1.4.14 Building Docs

To simply build the docs:

docker-compose run web make docs

If you’re working on the docs, use make loop to keep your built pages up-to-date:

make shell
cd docs
make loop

Open docs/_build/html/index.html in a web browser.

1.4.15 Add-ons Server Documentation

This is the documentation for the use of the addons-server and its services. All documentation is in plain text files
using reStructuredText and Sphinx.

To build the documentation, you need the dependencies from requirements/docs.txt. Those are automatically
installed together with make update_deps, so if you’ve installed that already (following the Installing Olympia
the long way page), you’re all set.

If you’re unsure, activate your virtualenv and run:

78 Chapter 1. Contents

https://bugzilla.mozilla.org/show_bug.cgi?id=902435
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/

olympia Documentation, Release 3.0

make update_deps

The documentation is viewable at http://addons-server.readthedocs.io/, and covers development using Add-ons Server,
the source code for Add-ons.

Its source location is in the /docs folder.

Note: this project was once called olympia, this documentation often uses that term.

Build the documentation

This is as simple as running:

make docs

This is the same as cd’ing to the docs folder, and running make html from there.

We include a daemon that can watch and regenerate the built HTML when documentation source files change. To use
it, go to the docs folder and run:

python watcher.py 'make html' $(find . -name '*.rst')

Once done, check the result by opening the following file in your browser:

/path/to/olympia/docs/_build/html/index.html

1.5 Third-Party Usage

Running your own Add-ons server will likely require a few changes. There is currently no easy way to provide custom
templates and since Firefox Accounts is used for authentication there is no way to authenticate a user outside of a
Mozilla property.

If you would like to run your own Add-ons server you may want to update addons-server to support custom templates
and move the Firefox Accounts management to a django authentication backend.

Another option would be to add any APIs that you required and write a custom frontend. This work is already
underway and should be completed at some point but help is always welcome. You can find the API work in this
project and the frontend work in addons-frontend.

1.5. Third-Party Usage 79

http://addons-server.readthedocs.io/
https://addons.mozilla.org/
https://github.com/mozilla/addons-server/tree/master/docs
https://github.com/mozilla/addons-server/issues/3799
https://github.com/mozilla/addons-frontend

olympia Documentation, Release 3.0

80 Chapter 1. Contents

HTTP Routing Table

/api
GET /api/v3/..., 4
GET /api/v3/accounts/account/(int:user_id|string:username)/,

10
GET /api/v3/accounts/account/(int:user_id|string:username)/collections/,

32
GET /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:collection_slug)/,

32
GET /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:collection_slug)/?with_addons,

33
GET /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:collection_slug)/addons/,

35
GET /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:collection_slug)/addons/(int:addon_id|string:slug)/,

35
GET /api/v3/accounts/account/(int:user_id|string:username)/notifications/,

13
GET /api/v3/accounts/profile/, 11
GET /api/v3/addons/[string:addon-id]/versions/[string:version]/(uploads/[string:upload-pk]/),

46
GET /api/v3/addons/addon/(int:addon_id|string:addon_slug|string:addon_guid)/versions/,

23
GET /api/v3/addons/addon/(int:addon_id|string:addon_slug|string:addon_guid)/versions/(int:id)/,

24
GET /api/v3/addons/addon/(int:addon_id|string:addon_slug|string:addon_guid)/versions/(int:id)/reviewnotes/,

15
GET /api/v3/addons/addon/(int:addon_id|string:addon_slug|string:addon_guid)/versions/(int:id)/reviewnotes/(int:id)/,

15
GET /api/v3/addons/addon/(int:id|string:slug|string:guid)/,

20
GET /api/v3/addons/addon/(int:id|string:slug|string:guid)/eula_policy/,

26
GET /api/v3/addons/addon/(int:id|string:slug|string:guid)/feature_compatibility/,

25
GET /api/v3/addons/autocomplete/, 19
GET /api/v3/addons/categories/, 29
GET /api/v3/addons/compat-override/, 28
GET /api/v3/addons/featured/, 17
GET /api/v3/addons/language-tools/, 26
GET /api/v3/addons/recommendations/, 29

GET /api/v3/addons/replacement-addon/,
27

GET /api/v3/addons/search/, 17
GET /api/v3/discovery/, 37
GET /api/v3/discovery/?telemetry-client-id=12345678-90ab-cdef-1234-567890abcdef,

38
GET /api/v3/file/[int:file_id]/[string:base_filename],

48
GET /api/v3/reviews/review/, 40
GET /api/v3/reviews/review/(int:id)/,

40
POST /api/v3/abuse/report/addon/, 8
POST /api/v3/abuse/report/user/, 9
POST /api/v3/accounts/account/(int:user_id|string:username)/collections/,

33
POST /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:collection_slug)/addons/,

36
POST /api/v3/accounts/account/(int:user_id|string:username)/notifications/,

13
POST /api/v3/accounts/super-create/, 13
POST /api/v3/activity/mail, 16
POST /api/v3/addons/, 45
POST /api/v3/github/validate/, 49
POST /api/v3/reviews/review/, 41
POST /api/v3/reviews/review/(int:id)/flag/,

42
POST /api/v3/reviews/review/(int:id)/reply/,

42
PUT /api/v3/addons/[string:addon-id]/versions/[string:version]/,

44
DELETE /api/v3/accounts/account/(int:user_id|string:username)/,

13
DELETE /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:collection_slug)/,

34
DELETE /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:collection_slug)/addons/(int:addon_id|string:slug)/,

36
DELETE /api/v3/accounts/account/(int:user_id|string:username)/picture,

12
DELETE /api/v3/accounts/session/, 14
DELETE /api/v3/reviews/review/(int:id)/,

81

olympia Documentation, Release 3.0

42
PATCH /api/v3/accounts/account/(int:user_id|string:username)/,

12
PATCH /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:collection_slug)/,

34
PATCH /api/v3/accounts/account/(int:user_id|string:username)/collections/(string:collection_slug)/addons/(int:addon_id|string:slug)/,

36
PATCH /api/v3/reviews/review/(int:id)/,

41

82 HTTP Routing Table

	Contents
	Security Bug Reports
	External API
	Server Install
	Development
	Third-Party Usage

	HTTP Routing Table

